版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
半经验方法Semiempiricaltheory密度泛函理论DensityFunctionalTheory(DFT)快速计算方法第一性原理计算ExactSolutionHFMP2CCSD(T)DZTZQZBasisSetExpansionFullCIWaveFunctionExpansionHF
LimitTypicalCalculations
BasisSetAllpossibleconfigurationsNeedtospecifymethodandbasissetwhendescribingacalculationInteractionbetweenbasissetandcorrelationmethodrequirepropertreatmentofbothforaccuratecalculations.dilemmaaccuracycostWhynotusebestavailablecorrelationmethodwiththelargestavailablebasisset?chemicalaccuracyComputationalCostC2H6C4H101天27=128天
等待并行ComputationalCostAMP2calculationwouldbe100xmoreexpensivethanHFcalculationwithsamebasisset.ACCSD(T)calculationwouldbe104xmoreexpensivethanHFcalculationwithsamebasisset.TriplingbasissetsizewouldincreaseMP2calculation243x(35).Increasingthemoleculesize2x(sayethanebutane)wouldincreaseaCCSD(T)calculation128x(27).为什么从头算方法慢?N粒子基Slaterdeterminant6重积分!NxNmatrix为什么从头算方法慢?单粒子基GTOSTOGTO1,2-electronintegrals6重积分!为什么从头算方法慢?Howmanyintegrals?电子数HFCI(H2O)2dimer亿亿亿为什么从头算方法慢?太多电子!太多积分!I/Obottleneck硬盘积分数据IO解决方案:不直接计算积分,用参数代替半经验方法Semiempirical不直接解方程密度泛函理论DensityFunctionalSemi-empiricalMOMethods基本思路ThehighcostofabinitioMOcalculationsislargelyduetothemanyintegralsthatneedtobecalculated(esp.twoelectronintegrals).Semi-empiricalMOmethodsstartwiththegeneralformofabinitioHartree-Fockcalculations,butmakenumerousapproximationsforthevariousintegrals.Manyoftheintegralsareapproximatedbyfunctions
withempiricalparametersthatareadjustedtoimprovetheagreementwithexperiment.Semi-empiricalMOMethods基本思路Coreorbitalsarenottreatedbysemi-empiricalmethods,sincetheydonotchangemuchduringchemicalreactionsOnlyaminimalsetofvalenceorbitalsareconsideredoneachatom(e.g.2s,2px,2py,2pzoncarbon)HFlevel没有电子相关valence只有价电子STO-V3G最小基组functions拟合实验Semi-empiricalMOMethods(1918-1997)non-benzenoid
aromaticity
"AMolecularOrbitalTheoryofOrganicChemistry",I,II,III,IV,V,VI,JACS,1952,3345-3350-3353-3354-3356-3363MOPACprogramMolecularOrbitalPACkageHuckelmethodErichHuckelextendedHuckelmethodRoaldHoffmannCNDO/2,INDO,NDDOJohnPopleMINDO,MNDO,AM1,PM3,RM1andSAM1Lysergicaciddiethylamide(LSD)49atomsgeometryoptimization:1974@CDC6600week2006@pc1minnowseconds~10000atomsExtendedHückelMethodH----HamiltonianmatrixCi----Columnvectorofthemolecularorbitalcoefficientsi----OrbitalenergyS----OverlapmatrixH
Ci=i
S
CiH
----Chooseasaconstant(valenceshellIP)H=KS(H+H)/2近似:Wolfsberg-Helmholtzconstant,1.75R.
Hoffmann,J.Chem.Phys.39,1397(1963).ExtendedHückelMethodconformation
cited1151ZeroDifferentialOverlap(ZDO,零级微分重迭)
TwoelectronrepulsionintegralsareoneofthemostexpensivepartsofabinitioMOcalculationsNeglectintegralsiforbitalsarenotthesameApproximateintegralsbyusings
orbitalsonly
CompleteNeglectofDifferentialOverlapCNDO[CNDO/1,CNDO/2]J.A.Pople,D.P.SantryandG.A.Segal,J.Chem.Phys.,1965,43,S129.totalnumberofsuchintegrals[N(N+1)/2][N(N+1)/2+1]/2N4/8N(N+1)/2N2/2全略微分重迭(H2O)220000200cited:478
IntermediateNeglectofDifferentialOverlapINDO间略微分重迭J.A.Pople,D.L.Beveridge,andP.A.Dobosh,J.Chem.Phys.47,2026(1967)keepintegralswhenA=B=C=DnowrarelyusedMINDO,ZINDO,SINDOINDOcited:415
ModifiedIntermediateNeglectofDifferentialOverlapBingham,R.C.,Dewar,M.J.S.andLo,D.H.J.Amer.Chem.Soc.,1975,97,1285.MINDO,MINDO/1,MINDO/2,MINDO/3MINDO/3参数化MINDO/3参数化生成焓偶极矩ZINDO/1,ZINDO/s
Zerner's
IntermediateNeglectofDifferentialOverlapMichaelZerner(1940-2000)groundstategeom.excitedstatesUVspectra
Symmetricorthogonalised
INDOSINDO,SINDO/1D.N.NandaandK.Jug,,TheoreticaChimicaActa,57,95,(1980)dorbitalsfor2ndrowelementNeglectofDiatomicDifferentialOverlapNDDO忽略双原子微分重迭J.A.Pople,D.L.Beveridge,andP.A.Dobosh,J.Chem.Phys.47,2026(1967)keepintegralswhenA=B&C=DThebasisofmostsuccessfulsemiempiricalmethodsMNDOAM1SAM1RM1PM3PM6
ModifiedNeglectofDifferentialOverlapMNDODewar,M.J.S.andThiel,W.,J.Amer.Chem.Soc.,1977,99,4899.MNDO/dThiel,W.andVoityuk,A.A.,J.Phys.Chem.,1996,100.616.+dbasisfunctionsMNDOCThiel,W.,J.Amer.Chem.Soc.,1981,103,1413.+correlationsDewar,M.J.S.andThiel,W.,J.Amer.Chem.Soc.,1977,99,4899.databaseparameterizationDewar,M.J.S.andThiel,W.,J.Amer.Chem.Soc.,1977,99,4899.cited:372Thiel,W.andVoityuk,A.A.,J.Phys.Chem.,1996,100.616.cited:87Thiel,W.,J.Amer.Chem.Soc.,1981,103,1413.cited:68notwelltested.
AustinModel1AM1
SemiempiricalabinitioModel1SAM1Dewar,M.J.S.,Zoebisch,E.G.,Healy,E.F.andStewart,J.J.P.,J.Amer.Chem.Soc.,1985,107,3902.Tetrahedron,1993,23,5003.MNDO+AM1/dPt-oligoolefinsbindingenergy
ParameterizedModelnumber3PM3thesameformalismandequationsastheAM1method,butcorerepulsionfunction:PM3usestwoGaussianfunctionsAM1usesbetweenoneandfourGaussians/elementStewart,J.J.P.J.Comput.Chem.1989,10,209.Stewart,J.J.P.J.Comput.Chem.1989,10,221.Stewart,J.J.P.J.Comput.Chem.1991,12,320.cited:4982
ParameterizedModelnumber3Stewart,J.J.P.J.Mol.Model.2004,10,155.Stewart,J.J.P.J.Mol.Model.2007,13,1173.PM6cited:261geometricaloptimization!BScatStrathclydeUniversity,Glasgow,Scotland,in1969PhDatStrathclydeUniversity,Glasgow,Scotland,in1972DScatStrathclydeUniversity,Glasgow,Scotland,in1995AuthoredthefirstMOPACwhileworkinginProfessorMichaelDewar'sgroup,1983.BeenworkingonMOPACnowfor27years.Authoredover140papers.In1999,wasreportedtobethe15thmost-citedchemistintheworld.WorkedattheFrankJ.SeilerResearchLaboratoryattheAirForceAcademyinColoradoSpringsfrom1984-1991.Becameaconsultant(asoleproprietor)in1991,andworkedasaconsultanttoFujitsuuntil2004.Hasbeenanindependentdevelopersincethen.HasseveralPCs,andworksoutofaroominthebasementofhishouseinColoradoSprings.Hasnostudentsorco-workers,butcommunicatesviatheInternet.Hehastwocats,awife,andasnow-blower,noneofwhichwork.ScienceorTechnique?Semi-empiricalmethods:heavilyparameterizedmethodsFit-an-elephantFreemanDysonEnricoFermi(1901-1954)(1923-)meson–protonscatteringcalculatednumbersagreedprettywellwithFermi'smeasurednumbers"Therearetwowaysofdoingcalculationsintheoreticalphysics.Oneway,andthisisthewayIprefer,istohaveaclearphysicalpictureoftheprocessthatyouarecalculating.Theotherwayistohaveapreciseandself-consistentmathematicalformalism.Youhaveneither."IndesperationIaskedFermiwhetherhewasnotimpressedbytheagreementbetweenourcalculatednumbersandhismeasurednumbers.Hereplied,“Howmanyarbitraryparametersdidyouuseforyourcalculations?”Ithoughtforamomentaboutourcut-offproceduresandsaid,“Four.”Hesaid,“IremembermyfriendJohnnyvonNeumannusedtosay,withfourparametersIcanfitanelephant,andwithfiveIcanmakehimwigglehistrunk.”ScienceorTechnique?Semi-empiricalmethods:heavilyparameterizedmethodsFit-an-elephantFreemanDysonEnricoFermiFit-an-elephantFreemanDysonEnricoFermiScienceorTechnique?heavilyparameterizedSemi-empiricalmethodsindependentofexperimentsexperiment-dependenttruth&onlytruthuseful&usable密度泛函理论DensityFunctionalTheoryDFTThewavefunctionitselfisessentiallyuninterpertable.Reduceproblemsize:WavefunctionsforN-electronsystemscontain4Ncoordinates.Wavefunctionbasedmethodsquicklybecomeintractableforlargesystems,evenwithcontinuedimprovementincomputingpower,duetothecoupledmotionoftheelectrons.Adesiretoworkwithsomephysicalobservableratherthanprobabilityamplitude.MotivationElectronicEnergyComponentsTotalelectronicenergycanbepartitioned:E=ET+ENE+EJ+EX+ECET,ENE,&EJarelargestcontributorstoEEX>EC
ET=KineticenergyoftheelectronsENE=CoulombattractionenergybetweenelectronsandnucleiEJ=CoulombrepulsionenergybetweenelectronsEX=Exchangeenergy,acorrectionfortheself-repulsionsofelectronsEC=CorrelationenergybetweenthemotionsofelectronswithdifferentspinsThomas-Fermi-Dirac(TFD)ModelEnergyisafunctionoftheoneelectrondensity,Nuclear-electronattraction&electron-electronrepulsionThomas-FermiapproximationforthekineticenergySlaterapproximationfortheexchangeenergyXModelTFDdoesnotpredictbondingandthetotalenergiesareinerrorby15-50%.IfthevalueinSlater’sExistreatedasparameter,thenbetterresultsareachieved.TheXmodel(aka.Hartree-Fock-Slater)uses=3/4.AlthoughXhasbeensupercededbymodernfunctionals,itisstillusefulforinorganicsystemsandpreliminarycalculations.TheNobelPrizeinChemistry1998“forhisdevelopmentofthedensity-functionaltheory"WalterKohn(1923-)1925-2004TheoreticalBasiscanbewrittenasasingleSlaterdeterminantoforbitals,butorbitalsarenotthesameasHartree-FockEXCtakescareofelectroncorrelationaswellasexchangeEnergyisafunctionalofthedensityE[]Thefunctionalisuniversal,independentofthesystemTheexactdensityminimizesE[]Appliesonlytothegroundstate
HohenbergandKohn(1964)KohnandSham(1965)
VariationalequationsforalocalfunctionalTheHohenberg-KohnTheorem
propertiesareuniquelydeterminedbytheground-stateelectron
In1964,HohenbergandKohnprovedthat:molecularenergy,wavefunction
andallothermolecularelectronic
probabilitydensity
namely,Phys.Rev.136,13864(1964)
.”“Formoleculeswitha
nondegenerate
groundstate,theground-state
Densityfunctionaltheory(DFT)attemptstoandotherground-statemolecularproperties
fromtheground-stateelectrondensity
calculate
probabilitydensityandotherproperties”emphasizesthedependenceoftheexternalpotential
differs
fordifferentmolecules.“Forsystemswithanondegenerategroundstate,theground-stateelectrondeterminestheground-statewavefunctionandenergy,,whichHowever,thefunctionalsareunknown.isalsowrittenasThefunctionalindependentoftheexternalonispotential.TheHohenberg-kohnvariationaltheorem“Foreverytrialdensityfunctionthatsatisfiesandforall,thefollowinginequalityholds:,isthetrueground–stateenergy.”whereTheKohn-Shammethod
Ifweknowtheground-stateelectrondensity
molecularpropertiesfromfunction.,theHohenberg-Kohntheoremtellsusthatitispossibleinprincipletocalculatealltheground-state,withouthavingtofindthemolecularwave
1965,KohnandShamdevisedapracticalmethodforfinding
andforfinding
from.[Phys.Rev.,140,A1133(1965)].Theirmethod
iscapable,inprinciple,ofyieldingexactresults,butbecausetheequationsof
theKohn-Sham(KS)methodcontainanunknownfunctionalthatmustbeapproximated,theKSformationofDFTyield
approximateresults.electronsthateachexperiencethesameexternalpotential
theground-stateelectronprobabilitydensity
equaltotheexactofthemoleculeweareinterestedin:.KohnandShamconsideredafictitiousreferencesystemsofnnoninteractingthatmakesofthereferencesystemSincetheelectronsdonot
interactwithoneanotherinthereferencesystem,theHamiltonianofthereferencesystemiswhereistheone-electronKohn-ShamHamiltonian.
自由电子气模型Thus,theground-statewavefunctionofthereferencesystemis:
isaspinfunctionorbitalenergies.areKohn-ShamForconvenience,thezerosubscriptonisomittedhereafter.Defineasfollows:ground-state
electronickineticenergysystemofnoninteractingelectrons.(either)isthedifferenceintheaveragebetweenthemoleculeand
thereference
Thequantityrepulsionenergy.units)
for
theelectrostaticinterelectronicistheclassicalexpression(inatomicRememberthatWiththeabovedefinitions,
canbewrittenasDefinetheexchange-correlationenergyfunctionalbyNowwehaveside
are
easytoevaluatefromgetagoodapproximationto
totheground-stateenergy.
Thefourthquantity
accurately.
ThekeytoaccurateKSDFT
calculationofmolecular
propertiesisto
Thefirstthreetermsontherightisarelativelysmallterm,butisnoteasytoevaluate
andtheymakethe
maincontributionsThusbecomes.Nowweneedexplicitequationstofindtheground-stateelectrondensity.sameelectrondensityasthatinthegroundstateofthemolecule:isreadilyprovedthatSincethefictitioussystemofnoninteractingelectronsisdefinedtohavethe,itground-stateenergybyvaryingtominimizethefunctional
canvarytheKSorbitals
minimizetheaboveenergyexpressionsubjecttotheorthonormalityconstraint:TheHohenberg-Kohnvariationaltheoremtellusthatwecanfindthe
soas.Equivalently,insteadofvaryingweThus,theKohn-Shamorbitalsarethosethatwiththeexchange-correlationpotential
definedby(Ifisknown,itsfunctionalderivative
isalsoknown.)CommentsontheDFTmethods:(1)TheKSequationsaresolvedinaself-consistentfashion,liketheHFequations.(2)ThecomputationtimerequiredforaDFTcalculationformallyscalesthe
third
power
ofthenumberofbasisfunctions.(3)ThereisnoDFmolecularwavefunction.(4)TheKSorbitalscanbeusedinqualitativeMOdiscussions,liketheHF
orbitals.TheKSoperatorexchangeoperatorsintheHFoperatorarereplacedbytheeffectsofbothexchangeandelectroncorrelation.isthesameastheHFoperator
exceptthatthe,whichhandles(5)Variousapproximatefunctionals
DFcalculations.Thefunctionalandacorrelation-energyfunctionalAmongvariousCommonlyusedandPW91(PerdewandWang’s1991functional)Lee-Yang-Parr(LYP)functionalareusedinmolecularapproximations,gradient-corrected
exchangeandcorrelationenergyfunctionalsarethemostaccurate.PW86(PerdewandWang’s1986functional)B88(Becke’s1988functional)P86(the
Perdew1986correlationfunctional)
(6)NowadaysKSDFTmethodsaregenerallybelievedtobebetterthantheHFmethod,andinmostcasestheyareevenbetterthanMP2
iswrittenasthesumofanexchange-energyfunctional
ConstructingDensityFunctionalsExactformisunknown.Hohenberg-Kohnisonlyanexistenceproof.Densityfunctionalshavetheform:ForLSDA:a=b=c=0Forpurefunctionals:a=0Systematicimprovementoffunctionalsispossible,butcomplicatedbythefactthatexactconstraintsandpropertiesofsaidfunctionalsarestillbeingelucidated.IncreasingChemicalAccuracyDecreasingComputationalCostsAccuracyvs.ComputationalCostLSDAGGAMeta-GGAX1951Dirac1930G96B86B88PW91PBE1996RPBE1999revPBE1998xPBE2004PW86mPWTPSS2003BR89PKZB1999Exchange,ExCS1975LSDAGGAMeta-GGAW38xPBE2004PW86PBE1996PW91LYP1988B95TPSS2003PKZB1999B88VWN1980PZ81PW92CAData1980Correlation,EcCalculatingExcTermsExchange-correlationfunctionalsmustbenumericallyintegratednotasrobustasanalyticmethods.Energiesandgradientsare1-3timesthecostofHartree-Fock.Frequenciesare2-4timesthecostofHartree-Fock.Someofthiscomputationalcostcanberecuperatedforpuredensityfunctionalsbyemployingthede
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 乡村振兴可行性研究报告(5篇)
- 结算协议书范本(10篇)
- 关于礼仪广播稿(18篇)
- 体育营销与社会责任-洞察分析
- 《客服新人培训》课件
- 网络拥塞缓解策略-洞察分析
- 水泥生产线能耗监测-洞察分析
- 微生物酶催化合成研究-洞察分析
- 同学聚会策划方案范文
- 无人驾驶汽车在物流配送中的应用-洞察分析
- GB/T 45076-2024再生资源交易平台建设规范
- 四川省巴中市2021-2022学年九年级上学期期末语文试题(解析版)
- 冬季防冻培训课件
- 职业卫生监督检查表
- 幼儿系列故事绘本课件贝贝熊系列-受人冷落-
- 消防水池 (有限空间)作业安全告知牌及警示标志
- 2022年中医药人才培养工作总结
- 精美小升初简历小学生自我介绍欧式word模板[可编辑]
- 采矿学课程设计陈四楼煤矿1.8mta新井设计(全套图纸)
- 201X最新离婚协议书(简洁版)
- 标签打印流程
评论
0/150
提交评论