版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
长风破浪会有时,直挂云帆济沧海。住在富人区的她2023年云南工贸职业技术学院高职单招(数学)试题库含答案解析(图片大小可自由调整)全文为Word可编辑,若为PDF皆为盗版,请谨慎购买!第1卷一.综合题(共50题)1.设a,b,c都是正数,求证:
(1)(a+b+c)≥9;
(2)(a+b+c)≥.答案:证明略解析:证明
(1)∵a,b,c都是正数,∴a+b+c≥3,++≥3.∴(a+b+c)≥9,当且仅当a=b=c时,等号成立.(2)∵(a+b)+(b+c)+(c+a)≥3,又≥,∴(a+b+c)≥,当且仅当a=b=c时,等号成立.2.直线(t为参数)的倾斜角是()
A.20°
B.70°
C.45°
D.135°答案:D3.若点A分有向线段所成的比是2,则点C分有向线段所成的比是()
A.
B.3
C.-2
D.-3答案:D4.如图所示,已知P是平行四边形ABCD所在平面外一点,连结PA、PB、PC、PD,点E、F、G、H分别为△PAB、△PBC、△PCD、△PDA的重心,求证:E、F、G、H四点共面答案:证明:分别延长P、PF、PG、PH交对边于M、N、Q、R.∵E、F、G、H分别是所在三角形的重心,∴M、N、Q、R为所在边的中点,顺次连结MNQR所得四边形为平行四边形,且有∵MNQR为平行四边形,∴由共面向量定理得E、F、G、H四点共面.5.将参数方程化为普通方程为(
)
A.y=x-2
B.y=x+2
C.y=x-2(2≤x≤3)
D.y=x+2(0≤y≤1)答案:C6.已知函数f(x)满足:x≥4,则f(x)=(12)x;当x<4时f(x)=f(x+1),则f(2+log23)═______.答案:∵2+log23<4,∴f(2+log23)=f(3+log23)=f(log224)=(12)log224=124故应填1247.设曲线C的方程是,将C沿x轴,y轴正向分别平移单位长度后,得到曲线C1.(1)写出曲线C1的方程;(2)证明曲线C与C1关于点A(,)对称.答案:(1)(2)证明略解析:(1)由已知得,,则平移公式是即代入方程得曲线C1的方程是(2)在曲线C上任取一点,设是关于点A的对称点,则有,,代入曲线C的方程,得关于的方程,即可知点在曲线C1上.反过来,同样可以证明,在曲线C1上的点关于点A的对称点在曲线C上,因此,曲线C与C1关于点A对称.8.如图,PA,PB切⊙O于
A,B两点,AC⊥PB,且与⊙O相交于
D,若∠DBC=22°,则∠APB═______.答案:连接AB根据弦切角有∠DBC=∠DAB=22°
∠PAC=∠DBA因为垂直∠DCB=90°根据外角∠ADB=∠DBC+∠DCB=112°
∵∠DBC=∠DAB∴∠DBA=180°-∠ADB-∠DAB=46°∴∠PAC=∠DBA=46°∴∠P=180°-∠PAC-∠PCA=44°故为:44°9.(1+x)6的各二项式系数的最大值是______.答案:根据二项展开式的性质可得,(1+x)6的各二项式系数的最大值C36=20故为:2010.某项考试按科目A、科目B依次进行,只有当科目A成绩合格时,才可继续参加科目B的考试.已知每个科目只允许有一次补考机会,两个科目成绩均合格方可获得证书.现某人参加这项考试,科目A每次考试成绩合格的概率均为23,科目B每次考试成绩合格的概率均为12.假设各次考试成绩合格与否均互不影响.
(Ⅰ)求他不需要补考就可获得证书的概率;
(Ⅱ)在这项考试过程中,假设他不放弃所有的考试机会,记他参加考试的次数为ξ,求ξ的数学期望Eξ.答案:设“科目A第一次考试合格”为事件A1,“科目A补考合格”为事件A2;“科目B第一次考试合格”为事件B1,“科目B补考合格”为事件B2.(Ⅰ)不需要补考就获得证书的事件为A1?B1,注意到A1与B1相互独立,根据相互独立事件同时发生的概率可得P(A1?B1)=P(A1)×P(B1)=23×12=13.即该考生不需要补考就获得证书的概率为13.(Ⅱ)由已知得,ξ=2,3,4,注意到各事件之间的独立性与互斥性,根据相互独立事件同时发生的概率可得P(ξ=2)=P(A1?B1)+P(.A1?.A2)=23×12+13×13=13+19=49.P(ξ=3)=P(A1?.B1?B2)+P(A1?.B1?.B2)+P(.A1?A2?B2)=23×12×12+23×12×12+13×23×12=16+16+19=49,P(ξ=4)=P(.A1?A2?.B2?B2)+P(.A1?A2?.B1?.B2)=13×23×12×12+13×23×12×12=118+118=19,∴Eξ=2×49+3×49+4×19=83.即该考生参加考试次数的数学期望为83.11.如图,△PAB所在的平面α和梯形ABCD所在的平面β互相垂直,且AD⊥α,AD=4,BC=8,AB=6,若tan∠ADP+2tan∠BCP=10,则点P在平面α内的轨迹是()A.圆的一部分B.椭圆的一部分C.双曲线的一部分D.抛物线的一部分答案:由AD⊥α,可得AD⊥AP,tan∠ADP=APAD,四边形ABCD是梯形,则AD∥BC,可得BC⊥α,BC⊥BP,则tan∠BCP=BPBC,又由tan∠ADP+2tan∠BCP=10,且AD=4,BC=8,可得AP+BP=40,又由AB=6,则AP+BP>AB,故P在平面α内的轨迹是椭圆的一部分,故选B.12.设△ABC是边长为1的正三角形,则|CA+CB|=______.答案:∵△ABC是边长为1的正三角形,∴|CA|=1,|CB|=1,CA?CB=1×1×cosπ3=12∴|CA+CB|=CA2+2CA?CB+CB2=1+1+
2×12=3,故为:313.节假日时,国人发手机短信问候亲友已成为一种时尚,若小李的40名同事中,给其发短信问候的概率为1,0.8,0.5,0的人数分别是8,15,14,3(人),通常情况下,小李应收到同事问候的信息条数为()
A.27
B.37
C.38
D.8答案:A14.一个正三棱锥的底面边长等于一个球的半径,该正三棱锥的高等于这个球的直径,则球的体积与正三棱锥体积的比值为()
A.
B.
C.
D.答案:A15.“神六”上天并顺利返回,让越来越多的青少年对航天技术发生了兴趣.某学校科技小组在计算机上模拟航天器变轨返回试验,设计方案
如图:航天器运行(按顺时针方向)的轨迹方程为x2100+y225=1,变轨(航天器运行轨迹由椭圆变为抛物线)后返回的轨迹是以y轴为
对称轴、M(0,647)为顶点的抛物线的实线部分,降落点为D(8,0),观测点A(4,0)、B(6,0)同时跟踪航天器.试问:当航天器在x轴上方时,观测点A、B测得离航天器的距离分别为______时航天器发出变轨指令.答案:设曲线方程为y=ax2+647,由题意可知,0=a•64+647.∴a=-17,∴曲线方程为y=-17x2+647.设变轨点为C(x,y),根据题意可知,抛物线方程与椭圆方程联立,可得4y2-7y-36=0,y=4或y=-94(不合题意,舍去).∴y=4.∴x=6或x=-6(不合题意,舍去).∴C点的坐标为(6,4),|AC|=25,|BC|=4.故为:25、4.16.如图是一个方形迷宫,甲、乙两人分别位于迷宫的A、B两处,两人同时以每一分钟一格的速度向东、西、南、北四个方向行走,已知甲向东、西行走的概率都为14,向南、北行走的概率为13和p,乙向东、西、南、北四个方向行走的概率均为q
(1)p和q的值;
(2)问最少几分钟,甲、乙二人相遇?并求出最短时间内可以相遇的概率.答案:(1)∵14+14+13+p=1,∴p=16,∵4q=1,∴q=14(2)t=2甲、乙两人可以相遇(如图,在C、D、E三处相遇)
设在C、D、E三处相遇的概率分别为PC、PD、PE,则:PC=(16×16)×(14×14)=1576PD=2(16×14)×2(14×14)=196PE=(14×14)×(14×14)=1256PC+PD+PE=372304即所求的概率为37230417.若lga,lgb是方程2x2-4x+1=0的两个根,则的值等于
A.2
B.
C.4
D.答案:A18.已知集合P={(x,y)|y=m},Q={(x,y)|y=ax+1,a>0,a≠1},如果P∩Q有且只有一个元素,那么实数m的取值范围是
______.答案:如果P∩Q有且只有一个元素,即函数y=m与y=ax+1(a>0,且a≠1)图象只有一个公共点.∵y=ax+1>1,∴m>1.∴m的取值范围是(1,+∞).故:(1,+∞)19.如图,设P,Q为△ABC内的两点,且AP=25AB+15AC,AQ=23AB+14AC,则△ABP的面积与△ABQ的面积之比为______.答案:设AM=25AB,AN=15AC则AP=AM+AN由平行四边形法则知NP∥AB
所以△ABP的面积△ABC的面积=|AN||AC|=15同理△ABQ的面积△ABC的面积=14故△ABP的面积△ABQ的面积=45故为:4520.表示随机事件发生的可能性大小的数叫做该事件的______.答案:根据概率的定义:表示随机事件发生的可能性大小的数叫做该事件的概率;一个随机事件发生的可能性很大,那么P的值接近1又不等于1,故为:概率.21.袋中有5个小球(3白2黑),现从袋中每次取一个球,不放回地抽取两次,则在第一次取到白球的条件下,第二次取到白球的概率是()
A.
B.
C.
D.答案:C22.直角三角形两直角边边长分别为3和4,将此三角形绕其斜边旋转一周,求得到的旋转体的表面积和体积.答案:根据题意,所求旋转体由两个同底的圆锥拼接而成它的底面半径等于直角三角形斜边上的高,高分别等于两条直角边在斜边的射影长∵两直角边边长分别为3和4,∴斜边长为32+42=5,由面积公式可得斜边上的高为h=3×45=125可得所求旋转体的底面半径r=125因此,两个圆锥的侧面积分别为S上侧面=π×125×4=48π5;S下侧面=π×125×3=36π5∴旋转体的表面积S=48π5+36π5=84π5由锥体的体积公式,可得旋转体的体积为V=13π×(125)2×5=48π523.已知曲线x=3cosθy=4sinθ(θ为参数,0≤θ≤π)上一点P,原点为0,直线P0的倾斜角为π4,则P点的坐标是______.答案:根据题意,曲线x=3cosθy=4sinθ(θ为参数,0≤θ≤π)消去参数化成普通方程,得x29+y216=1(y≥0)∵直线P0的倾斜角为π4,∴P点在直线y=x上,将其代入椭圆方程得x29+x216=1,解之得x=y=125(舍负),因此点P的坐标为(125,125)故为:(125,125)24.在投掷两枚硬币的随机试验中,记“一枚正面朝上,一枚反面朝上”为事件A,“两枚正面朝上”为事件B,则事件A,B()
A.既是互斥事件又是对立事件
B.是对立事件而非互斥事件
C.既非互斥事件也非对立事件
D.是互斥事件而非对立事件答案:D25.算法框图中表示判断的是()A.
B.
C.
D.
答案:∵在算法框图中,表示判断的是菱形,故选B.26.隋机变量X~B(6,),则P(X=3)=()
A.
B.
C.
D.答案:C27.某简单几何体的三视图如图所示,其正视图.侧视图.俯视图均为直角三角形,面积分别是1,2,4,则这个几何体的体积为()A.83B.43C.8D.4答案:由三视图知几何体是一个三棱锥,设出三棱锥的三条两两垂直的棱分别是x,y,z∴xy=2
①xz=4
②yz=8
③由①②得z=2y
④∴y=2∴以y为高的底面面积是2,∴三棱锥的体积是13×2×2=43故选B.28.对于函数f(x),在使f(x)≤M成立的所有常数M中,我们把M的最小值称为函数f(x)的“上确界”则函数f(x)=(x+1)2x2+1的上确界为()A.14B.12C.2D.4答案:因为f(x)=(x+1)2x2+1=x2+2x+1x2+1=1+2xx2+1又因为x2+1=|x|2+1≥2|x|≥2x∴2xx2+1≤1.∴f(x)≤2.即在使f(x)≤M成立的所有常数M中,M的最小值为2.故选C.29.利用斜二测画法能得到的()
①三角形的直观图是三角形;
②平行四边形的直观图是平行四边形;
③正方形的直观图是正方形;
④菱形的直观图是菱形.
A.①②
B.①
C.③④
D.①②③④答案:A30.已知AB和CD是曲线(t为参数)的两条相交于点P(2,2)的弦,若AB⊥CD,且|PA|·|PB|=|PC|·
|PD|,
(Ⅰ)将曲线(t为参数)化为普通方程,并说明它表示什么曲线;
(Ⅱ)试求直线AB的方程。答案:解:(Ⅰ)由y=4t得y2=16t2,而x=4t2,∴y2=4x,它表示抛物线;(Ⅱ)设直线AB和CD的倾斜角分别为α,β,则直线AB和CD的参数方程分别为,把①代入y2=4x中,得t2sin2α+(4sinα-4cosα)t-4=0,③依题意知sinα≠0且方程③的判别式Δ=16(sinα-cosα)2+16sin2α>0,∴方程③有两个不相等的实数解t1,t2,则由t的几何意义知|PA|=|t1|,|PB|=|t2|,∴|PA|·|PB|=|t1t2|=,同理|PC|·|PD|=,由|PA|·|PB|=|PC|·|PD|知,即sin2α=sin2β,∵0≤α,β<π,∴α=π-β,∵AB⊥CD,∴β=α+90°或α=β+90°,∴直线AB的倾斜角∴kAB=1或kAB=-1,故直线AB的方程为y=x或x+y-4=0。31.甲、乙两人参加一次考试,已知在备选的10道试题中,甲能答对其中6题,乙能答对其中8题.若规定每次考试分别都从这10题中随机抽出3题进行测试,至少答对2题算合格.
(1)分别求甲、乙两人考试合格的概率;
(2)求甲、乙两人至少有一人合格的概率.答案:(1)(2)解析:(1)设甲、乙考试合格分别为事件A、B,甲考试合格的概率为P(A)=,乙考试合格的概率为P(B)=.(2)A与B相互独立,且P(A)=,P(B)=,则甲、乙两人至少有一人合格的概率为P(AB++A)=×+×+×=.32.如图,花园中间是喷水池,喷水池周围的A、B、C、D区域种植草皮,要求相邻的区域种不同颜色的草皮,现有4种不同颜色的草皮可供选用,则共有______种不同的种植方法(以数字作答).答案:若AD相同,有4×(3+3×2)种种植方法,若AD不同,有4×3×(2+2×1)种种植方法∴共有4×(3+3×2)+4×3×(2+2×1)=36+48=84种不同方法.故为84.33.(选做题)在直角坐标系xOy中,以原点O为极点,x轴的正半轴为极轴建立极坐标系,已知射线θ=与曲线(t为参数)相较于A,B来两点,则线段AB的中点的直角坐标为(
)。答案:(2.5,2.5)34.
已知向量
=(4,3),=(1,2),若向量
+k
与
-
垂直,则k的值为(
)A.
233B.7C.-
115D.-
233答案:考点:数量积判断两个平面向量的垂直关系.35.直线l过椭圆x24+y23=1的右焦点F2并与椭圆交与A、B两点,则△ABF1的周长是()A.4B.6C.8D.16答案:根据题意结合椭圆的定义可得:|AF1|+|AF2|=2a=4,,并且|BF1|+|BF2|=2a=4,又因为|AF2|+|BF2|=|AB|,所以△ABF1的周长为:|AF1|+|BF1|+|AB|=|AF1|+|AF2|+|BF1|+|BF2|=4a=8.故选C.36.x=5
y=6
x+y=11
END
上面程序运行时输出的结果是()
A.x+y=11
B.11
C.x+y
D.出错信息答案:B37.如图,圆心角∠AOB=120°,P是AB上任一点(不与A,B重合),点C在AP的延长线上,则∠BPC等于______.
答案:解:设点E是优弧AB(不与A、B重合)上的一点,∵∠AOB=120°,∴∠AEB=60°,∵∠BPA=180°-∠AEB=180°-∠BPC,∴∠BPC=∠AEB.∴∠BPC=60°.故为60°.38.直线2x-3y+10=0的法向量的坐标可以是答案:C39.下列向量组中,能作为表示它们所在平面内所有向量的基底的是()A.a=(0,0),b=(1,-2)B.a=(1,-2),b=(2,-4)C.a=(3,5),b=(6,10)D.a=(2,-3),b=(6,9)答案:可以作为基底的向量需要是不共线的向量,A中一个向量是零向量,两个向量共线,不合要求B中两个向量是a=12b,两个向量共线,C项中的两个向量也共线,故选D.40.对于直线l的倾斜角α与斜率k,下列说法错误的是()
A.α的取值范围是[0°,180°)
B.k的取值范围是R
C.k=tanα
D.当α∈(90°,180°)时,α越大k越大答案:C41.为了了解1200名学生对学校某项教改试验的意见,打算从中抽取一个容量为30的样本,考虑采用系统抽样,则分段的间隔(抽样距)K为()
A.40
B.30
C.20
D.12答案:A42.设直线l过点P(-3,3),且倾斜角为56π
(1)写出直线l的参数方程;
(2)设此直线与曲线C:x=2cosθy=4sinθ(θ为参数)交A、B两点,求|PA|•|PB|答案:(1)由于过点(a,b)倾斜角为α的直线的参数方程为
x=a+t•cosαy=b+t•sinα(t是参数),∵直线l经过点P(-3,3),倾斜角α=5π6,故直线的参数方程是x=-3-32ty=3+12t(t是参数).…(5分)(2)因为点A,B都在直线l上,所以可设它们对应的参数为t1和t1,则点A,B的坐标分别为A(-3-32t1,3+12t1),B(2-32t1,3+12t1).把直线L的参数方程代入椭圆的方程4x2+y2=16整理得到t2+(123+3)t+11613=0①,…(8分)因为t1和t2是方程①的解,从而t1t2=11613,由t的几何意义可知|PA||PB|=|t1||t2|=11613.…(10分)即|PA|•|PB|=11613.43.下列在曲线上的点是(
)
A.
B.
C.
D.答案:B44.已知点A(1,0,0),B(0,2,0),C(0,0,3)则平面ABC与平面xOy所成锐二面角的余弦值为______.答案:AB=(-1,2,0),AC=(-1,0,3).设平面ABC的法向量为n=(x,y,z),则n•AB=-x+2y=0n•AC=-x+3z=0,令x=2,则y=1,z=23.∴n=(2,1,23).取平面xoy的法向量m=(0,0,1).则cos<m,n>=m•n|m|
|n|=231×22+1+(23)2=27.故为27.45.在空间直角坐标系中,已知A,B两点的坐标分别是A(2,3,5),B(3,1,4),则这两点间的距离|AB|=______.答案:∵A,B两点的坐标分别是A(2,3,5),B(3,1,4),∴|AB|=(3-2)2+(1-3)2+(4-5)2,=1+4+1=6,故为:6.46.已知两个力F1,F2的夹角为90°,它们的合力大小为10N,合力与F1的夹角为60°,那么F2的大小为()A.53NB.5NC.10ND.52N答案:由题意可知:对应向量如图由于α=60°,∴F2的大小为|F合|?sin60°=10×32=53.故选A.47.直线l1过点P(0,-1),且倾斜角为α=30°.
(I)求直线l1的参数方程;
(II)若直线l1和直线l2:x+y-2=0交于点Q,求|PQ|.答案:(Ⅰ)直线l1的参数方程为x=cos30°ty=-1+sin30°t即x=32ty=-1+12t(t为参数)
(Ⅱ)将上式代入x+y-2=0,得32t-1+12t-2=0解得t=3(3-1)根据t的几何意义得出|PQ|=|t|=3(3-1)48.已知a=(2,-1,3),b=(-1,4,-2),c=(7,5,λ),若a、b、c三个向量共面,则实数λ等于
A.
B.
C.
D.答案:D49.如图是一个几何体的三视图(单位:cm),则这个几何体的表面积是()A.(7+2)
cm2B.(4+22)cm2C.(6+2)cm2D.(6+22)cm2答案:图中的几何体可看成是一个底面为直角梯形的直棱柱.直角梯形的上底为1,下底为2,高为1;棱柱的高为1.可求得直角梯形的四条边的长度为1,1,2,2.所以此几何体的表面积S表面=2S底+S侧面=12(1+2)×1×2+(1+1+2+2)×1=7+2(cm2).故选A.50.平面向量与的夹角为60°,=(1,0),||=1,则|+2|=(
)
A.7
B.
C.4
D.12答案:B第2卷一.综合题(共50题)1.某班从6名班干部(其中男生4人,女生2人)中选3人参加学校学生会的干部竞选.
(1)设所选3人中女生人数为ξ,求ξ的分布列及数学期望;
(2)在男生甲被选中的情况下,求女生乙也被选中的概率.答案:(1)ξ的所有可能取值为0,1,2.依题意,得P(ξ=0)=C34C36=15,P(ξ=1)=C24C12C36=35,P(ξ=2)=C14C22C36=15.∴ξ的分布列为ξ012P153515∴Eξ=0×15+1×35+2×15=1.(2)设“男生甲被选中的情况下,女生乙也被选中”为事件C,“男生甲被选中”为事件A,“女生乙被选中”为事件B从4个男生、2个女生中选3人,男生甲被选中的种数为n(A)=C52=10,男生甲被选中,女生乙也被选中的种数为n(AB)=C41=4,∴P(C)=n(AB)n(A)=C14C25=410=25故在男生甲被选中的情况下,女生乙也被选中的概率为25.2.已知向量OC=(2,2),CA=(2cosa,2sina),则向量.OA的模的最大值是()A.3B.32C.2D.18答案:∵OA=OC+CA=(2+2cosa,2+2sina)|OA|=(2+2cosa)2+(2+2sina)2=10+8sin(a+π4)∴|OA|≤18=32故选B.3.圆锥的侧面展开图是一个半径长为4的半圆,则此圆锥的底面半径为
______.答案:设圆锥的底面半径为R,则由题意得,2πR=π×4,即R=2,故为:2.4.若函数y=ax(a>1)在[0,1]上的最大值与最小值之和为3,则a=______.答案:①当0<a<1时函数y=ax在[0,1]上为单调减函数∴函数y=ax在[0,1]上的最大值与最小值分别为1,a∵函数y=ax在[0,1]上的最大值与最小值和为3∴1+a=3∴a=2(舍)②当a>1时函数y=ax在[0,1]上为单调增函数∴函数y=ax在[0,1]上的最大值与最小值分别为a,1∵函数y=ax在[0,1]上的最大值与最小值和为3∴1+a=3∴a=2故为:2.5.设F1,F2分别是椭圆x24+y2=1的左、右焦点,P是第一象限内该椭圆上的一点,且P、F1、F2三点构成一直角三角形,则点P的纵坐标为______.答案:由题意,P是第一象限内该椭圆上的一点,且P、F1、F2三点构成一直角三角形,故可分为两类:①当∠P为直角时,设P的纵坐标为y,则F1,F2分别是椭圆x24+y2=1的左、右焦点∴|PF1|+|PF2|=4,|F1F2|=23∵∠P为直角,∴|PF1|2+|PF2|2=|F1F2|2,∵|PF1|+|PF2|=4,|F1F2|=23∴|PF1||PF2|=2∴S△PF1F2=12|PF1||PF2|=1∵S△PF1F2=12|F1F2|×y=3y∴3y=1∴y=33②当∠PF2F1为直角时,P的横坐标为3设P的纵坐标为y(y>0),则(3)24+y2=1,∴y=12故为:33
或126.(难线性运算、坐标运算)已知0<x<1,0<y<1,求M=x2+y2+x2+(1-y)2+(1-x)2+y2+(1-x)2+(1-y)2的最小值.答案:设A(0,0),B(1,0),C(1,1),D(0,1),P(x,y),则M=|PA|+|PD|+|PB|+|PC|=(|PA|+|PC|)+(|PB|+|PD|)=(|AP|+|PC|)+(|BP|+|PD|)≥|AP+PC|+|BP+PD|=|AC|+|BD|.而AC=(1,1),BD=(-1,1),得|AC|+|BD|=2+2=22.∴M≥22,当AP与PC同向,BP与PD同向时取等号,设PC=λAP,PD=μBP,则1-x=λx,1-y=λy,-x=μx-μ,1-y=μy,解得λ=μ=1,x=y=12.所以,当x=y=12时,M的最小值为22.7.已知P为抛物线y2=4x上一点,设P到准线的距离为d1,P到点A(1,4)的距离为d2,则d1+d2的最小值为______.答案:∵y2=4x,焦点坐标为F(1,0)根据抛物线定义可知P到准线的距离为d1=|PF|d1+d2=|PF|+|PA|进而可知当A,P,F三点共线时,d1+d2的最小值=|AF|=4故为48.如图,已知C点在圆O直径BE的延长线上,CA切圆O于A点,∠ACB的平分线分别交AE、AB于点F、D.
(Ⅰ)求∠ADF的度数;
(Ⅱ)若AB=AC,求ACBC的值.答案:解
(1)∵AC为圆O的切线,∴∠B=∠EAC,又CD是∠ACB的平分线,∴∠ACD=∠DCB,∴∠B+∠DCB=∠EAC+∠ACD,即∠ADF=∠AFD.又∵BE为圆O的直径,∴∠BAE=90°,∴∠ADF=12(180°-∠BAE)=45°(2)∵∠B=∠EAC,∠ACE=∠BCA,∴△ACE∽△BCA又∵AB=AC,∴∠B=∠ACB,∴∠B=∠ACB=∠EAC,由∠BAE=90°及三角形内角和知,∠B=30°,∴在Rt△ABE中,ACBC=AEBA=tan∠B=tan30°=339.若集合A={1,2,3},则集合A的真子集共有()A.3个B.5个C.7个D.8个答案:由集合A={1,2,3},所以集合A的真子集有?,{1},{2},{3},{1,2},{1,3},{2,3}共7个.故选C.10.将两枚质地均匀透明且各面分别标有1,2,3,4的正四面体玩具各掷一次,设事件A={两个玩具底面点数不相同},B={两个玩具底面点数至少出现一个2点},则P(B|A)=______.答案:设事件A={两个玩具底面点数不相同},包括以下12个基本事件:(1,2),(1,3),(1,4),(2,1),(2,3),(2,4),(3,1),(3,2),(3,4),(4,1),(4,2),(4,3).事件B={两个玩具底面点数至少出现一个2点},则包括以下6个基本事件:(1,2),(2,1),(2,3),(2,4),(3,2),(4,2).故P(B|A)=612=12.故为12.11.若已知A(1,1,1),B(-3,-3,-3),则线段AB的长为()
A.4
B.2
C.4
D.3答案:A12.已知随机变量X~B(n,0.8),D(X)=1.6,则n的值是()
A.8
B.10
C.12
D.14答案:B13.椭圆x=3cosθy=4sinθ的离心率是______.答案:∵x=3cosθy=4sinθ,∴(x3)2+(y4)2=cos2θ+sin2θ=1,即x29+y216=1,其中a2=16,b2=9,故c2=a2-b2=16-9=7(a>0,b>0,c>0),∴其离心率e=ca=74.故为:74.14.两平行直线x+3y-4=0与2x+6y-9=0的距离是
______.答案:由直线x+3y-4=0取一点A,令y=0得到x=4,即A(4,0),则两平行直线的距离等于A到直线2x+6y-9=0的距离d=|8-9|22+62=1210=1020.故为:102015.设集合M={x|0<x≤3},N={x|0<x≤1},那么“a∈M”是“a∈N”的()
A.充分不必要条件
B.必要不充分条件
C.充要条件
D.既不充分也不必要条件答案:B16.已知矩阵A将点(1,0)变换为(2,3),且属于特征值3的一个特征向量是11,(1)求矩阵A.(2)β=40,求A5β.答案:(1)设A=abcd,由abcd10=23得,a=2c=3,由abcd11=311=33得,a+b=3c+d=3,所以b=1d=0所以A=2130.
7分(2)A=2130的特征多项式为f(λ)=.λ-2-1-3λ.=
(λ
-3)(λ+1)令f(λ)=0,可得λ1=3,λ2=-1,λ1=3时,α1=11,λ2=-1时,α2=1-3令β=mα1+α2,则β=40=3α1+α2,A5β=3×35α1-α2=36-136+3…14分.17.用数学归纳法证明等式时,第一步验证n=1时,左边应取的项是()
A.1
B.1+2
C.1+2+3
D.1+2+3+4答案:D18.动点P到直线x+2=0的距离减去它到M(1,0)的距离之差等于1,则动点P的轨迹是______.答案:将直线x+2=0向右平移1个长度单位得到直线x+1=0,则动点到直线x+1=0的距离等于它到M(1,0)的距离,由抛物线定义知:点P的轨迹是以点M为焦点的抛物线.:以点M为焦点以x=-1为准线的抛物线.19.方程组的解集是[
]A.{5,1}
B.{1,5}
C.{(5,1)}
D.{(1,5)}答案:C20.袋中有4只红球3只黑球,从袋中任取4只球,取到1只红球得1分,取到1只黑球得3分,设得分为随机变量ξ,则P(ξ≤6)=______.答案:取出的4只球中红球个数可能为4,3,2,1个,黑球相应个数为0,1,2,3个.其分值为ξ=4,6,8.P(ξ≤6)=P(ξ=4)+P(ξ=6)=C44C03C47+C34C13C47=1335.故为:1335.21.某车间工人已加工一种轴100件,为了了解这种轴的直径,要从中抽出10件在同一条件下测量(轴的直径要求为(20±0.5)mm),如何采用简单随机抽样方法抽取上述样本?答案:本题是一个简单抽样,∵100件轴的直径的全体是总体,将其中的100个个体编号00,01,02,…,99,利用随机数表来抽取样本的10个号码,可以从表中的第20行第3列的数开始,往右读数,得到10个号码如下:16,93,32,43,50,27,89,87,19,20将上述号码的轴在同一条件下测量直径.22.复数z=(2+i)(1+i)在复平面上对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限答案:因为z=(2+i)(1+i)=2+3i+i2=1+3i,所以复数对应点的坐标为(1,3),所以位于第一象限.故选A.23.将正方形ABCD沿对角线BD折起,使平面ABD⊥平面CBD,E是CD中点,则∠AED的大小为()
A.45°
B.30°
C.60°
D.90°答案:D24.H:x-y+z=2为坐标空间中一平面,L为平面H上的一直线.已知点P(2,1,1)为L上距离原点O最近的点,则______为L的方向向量.答案:∵x-y+z=2为坐标空间中一平面∴平面的一个法向量是n=(1,-1,1)设直线L的方向向量为d=(2,b,c)∵L在H上,∴d与平面H的法向量n=(1,-1,1)垂直故d•n=0⇒2-b+c=0∵P(2,1,1)为直线L上距离原点O最近的点,∴.OP⊥L故OP•d=0⇒(2,1,1)•(2,b,c)=0⇒4+b+c=0解得b=-1,c=-3故为:(2,-1,-3)25.已知0<k<4,直线l1:kx-2y-2k+8=0和直线l:2x+k2y-4k2-4=0与两坐标轴围成一个四边形,则使得这个四边形面积最小的k值为______.答案:如图所示:直线l1:kx-2y-2k+8=0即k(x-2)-2y+8=0,过定点B(2,4),与y轴的交点C(0,4-k),直线l:2x+k2y-4k2-4=0,即2x-4+k2(y-4)=0,过定点(2,4),与x轴的交点A(2k2+2,0),由题意知,四边形的面积等于三角形ABD的面积和梯形OCBD的面积之和,故所求四边形的面积为12×4×(2k2+2-2)+2×(4-k+4)2=4k2-k+8,∴k=18时,所求四边形的面积最小,故为18.26.若点M是△ABC的重心,则下列向量中与AB共线的是______.(填写序号)
(1)AB+BC+AC
(2)AM+MB+BC
(3)AM+BM+CM
(4)3AM+AC.答案:对于(1)AB+BC+AC=2AC不与AB共线对于(2)AM+MB+BC=AB+BC=AC不与AB对于(3)AM+BM+CM=13(AB+AC)+13(BA+BC)+13(CA+CB)=0与AB对于(4)3AM+AC=AB+AC+AC不与AB故为:(3)27.已知△ABC的三个顶点为A(1,-2,5),B(-1,0,1),C(3,-4,5),则边BC上的中线长为______.答案:∵A(1,-2,5),B(-1,0,1),C(3,-4,5),∴BC的中点为D(1,-2,3),∴|AD|=(1-1)2+(-2+2)2+(5-3)2=2.故为:2.28.高二年级某班有男生36人,女生28人,从中任选一位同学为数学科代表,则不同选法的种数是()A.36B.28C.64D.1008答案:高二年级某班有男生36人,女生28人,即共有64人,从中任选一位同学为数学科代表,则不同选法的种数64,故选C.29.某校为提高教学质量进行教改实验,设有试验班和对照班.经过两个月的教学试验,进行了一次检测,试验班与对照班成绩统计如下的2×2列联表所示(单位:人),则其中m=______,n=______.
80及80分以下80分以上合计试验班321850对照班12m50合计4456n答案:由题意,18+m=56,50+50=n,∴m=38.n=100,故为38,010.30.已知向量a=2e1-3e2,b=2e1+3e2,其中e1、e2不共线,向量c=2e1-9e2.问是否存在这样的实数λ、μ,使向量d=λa+μb与c共线?答案:∵d=λ(2e1-3e2)+μ(2e1+3e2)=(2λ+2μ)e1+(-3λ+3μ)e2,若d与c共线,则存在实数k≠0,使d=kc,即(2λ+2μ)e1+(-3λ+3μ)e2=2ke1-9ke2,由2λ+2μ=2k-3λ+3μ=-9k得λ=-2μ.故存在这样的实数λ、μ,只要λ=-2μ,就能使d与c共线.31.如图程序框图箭头a指向①处时,输出
s=______.箭头a指向②处时,输出
s=______.答案:程序在运行过程中各变量的情况如下表所示:(1)当箭头a指向①时,是否继续循环
S
i循环前/0
1第一圈
是
1
2第二圈
是
2
3第三圈
是
3
4第四圈
是
4
5第五圈
是
5
6第六圈
否故最终输出的S值为5,即m=5;(2)当箭头a指向②时,是否继续循环
S
i循环前/0
1第一圈
是
1
2第二圈
是
1+2
3第三圈
是
1+2+3
4第四圈
是
1+2+3+4
5第五圈
是
1+2+3+4+5
6第六圈
否故最终输出的S值为1+2+3+4+5=15;则n=15.故为:5,15.32.已知求证:答案:证明见解析解析:证明:33.以下四组向量中,互相平行的是.()
(1)=(1,2,1),=(1,-2,3);
(2)=(8,4,-6),=(4,2,-3);
(3)=(0,1,-1),=(0,-3,3);
(4)=(-3,2,0),=(4,-3,3).
A.(1)(2)
B.(2)(3)
C.(2)(4)
D.(1)(3)答案:B34.应用反证法推出矛盾的推导过程中要把下列哪些作为条件使用()
①结论相反的判断,即假设
②原命题的条件
③公理、定理、定义等
④原结论
A.①②
B.①②④
C.①②③
D.②③答案:C35.在空间直角坐标系0xyz中有两点A(2,5,1)和B(2,4,-1),则|AB|=______.答案:∵点A(2,5,1)和B(2,4,-1),∴AB=(0,-1,-2).∴|AB|=0+(-1)2+(-2)2=5.故为5.36.某市为抽查控制汽车尾气排放的执行情况,选择了抽取汽车车牌号的末位数字是6的汽车进行检查,这样的抽样方式是(
)
A.抽签法
B.简单随机抽样
C.分层抽样
D.系统抽样答案:D37.阅读程序框图,运行相应的程序,则输出i的值为()A.3B.4C.5D.6答案:该程序框图是循环结构经第一次循环得到i=1,a=2;经第二次循环得到i=2,a=5;经第三次循环得到i=3,a=16;经第四次循环得到i=4,a=65满足判断框的条件,执行是,输出4故选B38.与直线3x+4y-3=0平行,并且距离为3的直线方程为______.答案:设所求直线上任意一点P(x,y),由题意可得点P到所给直线的距离等于3,即|3x+4y-3|5=3,∴|3x+4y-3|=15,∴3x+4y-3=±15,即3x+4y-18=0或3x+4y+12=0.故为3x+4y-18=0或3x+4y+12=0.39.已知||=2,||=,∠AOB=150°,点C在∠AOB内,且∠AOC=30°,设(m,n∈R),则=()
A.
B.
C.
D.答案:B40.设a,b,λ都为正数,且a≠b,对于函数y=x2(x>0)图象上两点A(a,a2),B(b,b2).
(1)若AC=λCB,则点C的坐标是______;
(2)过点C作x轴的垂线,交函数y=x2(x>0)的图象于D点,由点C在点D的上方可得不等式:______.答案:(1)设点C(x,y),因为点A(a,a2),B(b,b2),AC=λCB,则(x-a,y-a2)=λ(b-x,b2-y),所以:x=a+λb1+λ,y=a2+λb21+λ(2)因为点C在点D的上方,则y>yD,所以a2+λb21+λ>(a+λb1+λ)241.如图所示,有两个独立的转盘(A)、(B),其中三个扇形区域的圆心角分别为60°、120°、180°.用这两个转盘玩游戏,规则是:依次随机转动两个转盘再随机停下(指针固定不动,当指针恰好落在分界线时,则这次转动无效,重新开始)为一次游戏,记转盘(A)指针所对的数为X转盘(B)指针对的数为Y设X+Yξ,每次游戏得到的奖励分为ξ分.
(1)求X<2且Y>1时的概率
(2)某人玩12次游戏,求他平均可以得到多少奖励分?答案:(1)由几何概型知P(x=1)=16,P(x=2)=13,P(x=3)=12;
P(y=1)=13,P(y=2)=12,P(y=3)=16.则P(x<2)=P(x=1)=16,P(y>1)=p(y=2)+P(y=3)=23,P(x<2且y>1)=P(x<2)?P(y>1)=19.(2)ξ的取值范围为2,3,4,6.P(ξ=2)=P(x=1)?P(y=1)=16×13=118;P(ξ=3)=P(x=1)?P(y=2)+P(x=2)?P(y=1)=16×12+13×13=736;P(ξ=4)=P(x=1)?P(y=3)+P(x=2)?P(y=2)+P(x=3)?P(y=1)=16×16+13×12+12×13=1336;P(ξ=5)=P(x=2)P(y=3)+P(x=3)P(y=2)=13×16+12×12=1136;P(ξ=6)=P(x=3)?P(y=3)=12×16=112.其分布为:ξ23456P11873613361136112他平均每次可得到的奖励分为Eξ=2×118+3×736+4×1336+5×1136+6×112=256,所以,他玩12次平均可以得到的奖励分为12×Eξ=50.42.方程2x2+ky2=1表示的曲线是长轴在y轴的椭圆,则实数k的范围是()A.(0,+∞)B.(2,+∞)C.(0,2)D.(2,0)答案:椭圆方程化为x212+y21k=1.焦点在y轴上,则1k>12,即k<2.又k>0,∴0<k<2.故选C.43.已知A(1,2),B(-3,b)两点的距离等于42,则b=______.答案:∵A(1,2),B(-3,b)∴|AB|=(-3-1)2+(b-2)2=42,解之得b=6或-2故为:6或-244.若椭圆长轴长与短轴长之比为2,它的一个焦点是(215,0),则椭圆的标准方程是______.答案:由题设条件知a=2b,c=215,∴4b2=b2+60,∴b2=20,a2=80,∴椭圆的标准方程是x280+y220=1.故为:x280+y220=1.45.如图的矩形,长为5,宽为2,在矩形内随机地撒300颗黄豆,数得落在阴影部分的黄豆数为138颗,则我们可以估计出阴影部分的面积为
______.答案:根据题意:黄豆落在阴影部分的概率是138300矩形的面积为10,设阴影部分的面积为s则有s10=138300∴s=235故为:23546.已知正数x,y,且x+4y=1,则xy的最大值为()
A.
B.
C.
D.答案:C47.某商场举行购物抽奖促销活动,规定每位顾客从装有编号为0,1,2,3四个相同小球的抽奖箱中,每次取出一球记下编号后放回,连续取两次,若取出的两个小球号码相加之和等于6则中一等奖,等于5中二等奖,等于4或3中三等奖.
(1)求中三等奖的概率;
(2)求中奖的概率.答案:(1)设“中三等奖”为事件A,“中奖”为事件B,从四个小球中有放回的取两个共有(0,0),(0,1),(0,2),(0,3),(1,0),(1,1)(1,2),(1,3),(2,0),(2,1),(2,2),(2,3),(3,0),(3,1),(3,2),(3,3)16种不同的结果两个小球号码相加之和等于4的取法有3种:(1,3),(2,2),(3,1)两个小球号相加之和等于3的取法有4种:(0,3),(1,2),(2,1),(3,0)由互斥事件的加法公式得:P(A)=316+416=716,即中三等奖的概率为716;(2)两个小球号码相加之和等于3的取法有4种;(0,3),(1,2),(2,1),(3,0)两个小球相加之和等于4的取法有3种;(1,3),(2,2),(3,1)两个小球号码相加之和等于5的取法有2种:(2,3),(3,2)两个小球号码相加之和等于6的取法有1种:(3,3)由互斥事件的加法公式得:P(B)=116+216+316+416=58.即中奖的概率为:58.48.已知向量,,则“,λ∈R”成立的必要不充分条件是()
A.
B与方向相同
C.
D.答案:D49.设i为虚数单位,若(x+i)(1-i)=y,则实数x,y满足()
A.x=-1,y=1
B.x=-1,y=2
C.x=1,y=2
D.x=1,y=1答案:C50.过点P(2,3)且以a=(1,3)为方向向量的直线l的方程为______.答案:设直线l的另一个方向向量为a=(1,k),其中k是直线的斜率可得a=(1,3)与a=(1,k)互相平行∴11=k3⇒k=3,所以直线l的点斜式方程为:y-3=3(x-2)化成一般式:3x-y-3=0故为:3x-y-3=0.第3卷一.综合题(共50题)1.某工厂生产的产品,用速度恒定的传送带将产品送入包装车间之前,质检员每隔3分钟从传送带上是特定位置取一件产品进行检测,这种抽样方法是()
A.简单随机抽样
B.系统抽样
C.分层抽样
D.其它抽样方法答案:B2.从一批羽毛球产品中任取一个,质量小于4.8
g的概率是0.3,质量不小于4.85
g的概率是0.32,那么质量在[4.8,4.85)g范围内的概率是()
A.0.62
B.0.38
C.0.7
D.0.68答案:B3.证明不等式的最适合的方法是()
A.综合法
B.分析法
C.间接证法
D.合情推理法答案:B4.如图,已知⊙O的直径AB=5,C为圆周上一点,BC=4,过点C作⊙O的切线l,过点A作l的垂线AD,垂足为D,则CD=______.
答案:如图,连接OC,由题意DC是切线可得出OC⊥DC,再过过A作AE⊥OC于E,故有四边形AECD是矩形,可得AE=CD又⊙O的直径AB=5,C为圆周上一点,BC=4,∴AC=3故S△AOC=12S△ABC=12×12×4×3=3又OC=52,故12×52×AE=3解得AE=125所以CD=125故为:125.5.若将方程|(x-4)2+y2-(x+4)2+y2|=6化简为x2a2-y2b2=1的形式,则a2-b2=______.答案:方程|(x-4)2+y2-(x+4)2+y2|=6,表示点(x,y)到(4,0),(-4,0)两点距离差的绝对值为6,∴轨迹为以(4,0),(-4,0)为焦点的双曲线,方程为x29-y27=1∴a2-b2=2故为:26.如图,在△ABC中,D是AC的中点,E是BD的中点,AE交BC于F,则的值等于()
A.
B.
C.
D.
答案:A7.2005年10月,我国载人航天飞船“神六”飞行获得圆满成功.已知“神六”飞船变轨前的运行轨道是一个以地心为焦点的椭圆,飞船近地点、远地点离地面的距离分别为200公里、250公里.设地球半径为R公里,则此时飞船轨道的离心率为______.(结果用R的式子表示)答案:(I)设椭圆的方程为x2a2+y2b2=1由题设条件得:a-c=|OA|-|OF2|=|F2A|=R+200,a+c=|OB|+|OF2|=|F2B|=R+250,解得a=225+R,c=25则此时飞船轨道的离心率为25225+R故为:25225+R.8.在空间四边形OABC中,OA+AB-CB等于()A.OAB.ABC.OCD.AC答案:根据向量的加法、减法法则,得OA+AB-CB=OB-CB=OB+BC=OC.故选C.9.一平面截球面产生的截面形状是______;它截圆柱面所产生的截面形状是______.答案:根据球的几何特征,一平面截球面产生的截面形状是圆;当平面与圆柱的底面平行时,截圆柱面所产生的截面形状为圆;当平面与圆柱的底面不平行时,截圆柱面所产生的截面形状为椭圆;故为:圆,圆或椭圆10.点B是点A(1,2,3)在坐标平面yOz内的正投影,则|OB|等于()
A.
B.
C.
D.答案:B11.若a2+b2=c2,求证:a,b,c不可能都是奇数.答案:证明:假设a,b,c都是奇数,则a2,b2,c2都是奇数,得a2+b2为偶数,而c2为奇数,即a2+b2≠c2,这与a2+b2=c2相矛盾,所以假设不成立,故原命题成立.12.抛物线y=4x2的焦点坐标为()
A.(1,0)
B.(0,)
C.(0,1)
D.(,0)答案:B13.已知正方形ABCD的边长为1,=,=,=,则|++|等于(
)
A.0
B.2
C.
D.3答案:B14.已知直线l的方程为x=2-4
ty=1+3
t,则直线l的斜率为______.答案:直线x=2-4
ty=1+3
t,所以直线的普通方程为:(y-1)=-34(x-2);所以直线的斜率为:-34;故为:-34.15.命题“正数的绝对值等于它本身”的逆命题是______.答案:将命题“正数的绝对值等于它本身”改写为“若一个数是正数,则其绝对值等于它本身”,所以逆命题是“若一个数的绝对值等于它本身,则这个数是正数”,即“绝对值等于它本身的数是正数”.故为:“绝对值等于它本身的数是正数”.16.设F1,F2分别是椭圆x24+y2=1的左、右焦点,P是第一象限内该椭圆上的一点,且P、F1、F2三点构成一直角三角形,则点P的纵坐标为______.答案:由题意,P是第一象限内该椭圆上的一点,且P、F1、F2三点构成一直角三角形,故可分为两类:①当∠P为直角时,设P的纵坐标为y,则F1,F2分别是椭圆x24+y2=1的左、右焦点∴|PF1|+|PF2|=4,|F1F2|=23∵∠P为直角,∴|PF1|2+|PF2|2=|F1F2|2,∵|PF1|+|PF2|=4,|F1F2|=23∴|PF1||PF2|=2∴S△PF1F2=12|PF1||PF2|=1∵S△PF1F2=12|F1F2|×y=3y∴3y=1∴y=33②当∠PF2F1为直角时,P的横坐标为3设P的纵坐标为y(y>0),则(3)24+y2=1,∴y=12故为:33
或1217.如图程序框图箭头a指向①处时,输出
s=______.箭头a指向②处时,输出
s=______.答案:程序在运行过程中各变量的情况如下表所示:(1)当箭头a指向①时,是否继续循环
S
i循环前/0
1第一圈
是
1
2第二圈
是
2
3第三圈
是
3
4第四圈
是
4
5第五圈
是
5
6第六圈
否故最终输出的S值为5,即m=5;(2)当箭头a指向②时,是否继续循环
S
i循环前/0
1第一圈
是
1
2第二圈
是
1+2
3第三圈
是
1+2+3
4第四圈
是
1+2+3+4
5第五圈
是
1+2+3+4+5
6第六圈
否故最终输出的S值为1+2+3+4+5=15;则n=15.故为:5,15.18.已知向量a=2e1-3e2,b=2e1+3e2,其中e1、e2不共线,向量c=2e1-9e2.问是否存在这样的实数λ、μ,使向量d=λa+μb与c共线?答案:∵d=λ(2e1-3e2)+μ(2e1+3e2)=(2λ+2μ)e1+(-3λ+3μ)e2,若d与c共线,则存在实数k≠0,使d=kc,即(2λ+2μ)e1+(-3λ+3μ)e2=2ke1-9ke2,由2λ+2μ=2k-3λ+3μ=-9k得λ=-2μ.故存在这样的实数λ、μ,只要λ=-2μ,就能使d与c共线.19.如图,在正方体ABCD-A1B1C1D1中,E为AB的中点.
(1)求异面直线BD1与CE所成角的余弦值;
(2)求二面角A1-EC-A的余弦值.答案:以D为原点,DC为y轴,DA为x轴,DD1为Z轴建立空间直角坐标系,…(1分)则A1(1,0,1),B(1,1,0),C(0,1,0),D1(0,0,1),E(1,12,0),…(2分)(1)BD1=(-1,-1,1),CE=(1,-12,0)…(1分)cos<BD1,CE>=-1515,…(1分)所以所求角的余弦值为1515…(1分)(2)D1D⊥平面AEC,所以D1D为平面AEC的法向量,D1D=(0,0,1)…(1分)设平面A1EC法向量为n=(x,y,z),又A1E=(0,12,-1),A1C=(-1,1,-1),n•A1E=0n•A1C=0即12y-z=0-x+y-z=0,取n=(1,2,1),…(3分)所以cos<DD1,n>=66…(2分)20.随机变量ξ的分布列为k=1、2、3、4,c为常数,则P(<ξ<)的值为()
A.
B.
C.
D.答案:B21.对于空间中的三个向量,
,
,它们一定是()
A.共面向量
B.共线向量
C.不共面向量
D.以上均不对答案:A22.双曲线x29-y216=1的两个焦点为F1、F2,点P在双曲线上,若PF1⊥PF2,则点P到x轴的距离为______.答案:设点P(x,y),∵F1(-5,0)、F2(5,0),PF1⊥PF2,∴y-0x+5•y-0x-5=-1,∴x2+y2=25
①,又x29-y216=1,∴25-y29-y216=1,∴y2=16225,∴|y|=165,∴P到x轴的距离是165.23.在直角坐标系中,画出下列向量:
(1)|a|=2,a的方向与x轴正方向的夹角为60°,与y轴正方向的夹角为30°;
(2)|a|=4,a的方向与x轴正方向的夹角为30°,与y轴正方向的夹角为120°;
(3)|a|=42,a的方向与x轴正方向的夹角为135°,与y轴正方向的夹角为135°.答案:由题意作出向量a如右图所示:(1)(2)(3)24.用样本估计总体,下列说法正确的是()A.样本的结果就是总体的结果B.样本容量越大,估计就越精确C.样本容量越小,估计就越精确D.样本的方差可以近似地反映总体的平均状态答案:用样本估计总体时,样本容量越大,估计就越精确,样本的平均值可以近似地反映总体的平均状态,样本的标准差可以近似地反映总体的波动状态,数据的方差越大,说明数据越不稳定,样本的结果可以粗略的估计总体的结果,但不就是总体的结果.故选B.25.若平面α,β的法向量分别为(-1,2,4),(x,-1,-2),并且α⊥β,则x的值为()A.10B.-10C.12D.-12答案:∵α⊥β,∴平面α,β的法向量互相垂直∴(-1,2,4)•(x,-1,-2)=0即-1×x+(-1)×2+4×(-2)=0解得x=-10故选B.26.在平面直角坐标系xOy中,设F1(-4,0),F2(4,0),方程x225+y29=1的曲线为C,关于曲线C有下列命题:
①曲线C是以F1、F2为焦点的椭圆的一部分;
②曲线C关于x轴、y轴、坐标原点O对称;
③若P是上任意一点,则PF1+PF2≤10;
④若P是上任意一点,则PF1+PF2≥10;
⑤曲线C围成图形的面积为30.
其中真命题的序号是______.答案:∵x225+y29=1即为|x|5+|y|3=1表示四条线段,如图故①④错,②③对对于⑤,图形的面积为3×52×4=30,故⑤对.故为②③⑤27.设P、Q为两个非空实数集合,定义集合P+Q={x|x=a+b,a∈P,b∈Q},若P={0,2,5},Q={1,2,6},则P+Q中元素的个数是______.答案:∵a∈P,b∈Q,∴a可以为0,2,5三个数,b可以为1,2,6三个数,∴x=0+1=1,x=0+2=2,x=0+6=6,x=2+1=3,x=2+2=4,x=2+6=8,x=5+1=6,x=5+2=7,x=5+6=11,∴P+Q={x|x=a+b,a∈P,b∈Q}={1,2,3,4,6,7,8,11},有8个元素.故为8.28.若复数z=(2-i)(a-i),(i为虚数单位)为纯虚数,则实数a的值为______.答案:z=(2-i)(a-i)=2a-1-(2+a)i∵若复数z=(2-i)(a-i)为纯虚数,∴2a-1=0,a+2≠0,∴a=12故为:1229.已知f(x)=,若f(x0)>1,则x0的取值范围是()
A.(0,1)
B.(-∞,0)∪(0,+∞)
C.(-∞,0)∪(1,+∞)
D.(1,+∞)答案:C30.已知某离散型随机变量ξ的数学期望Eξ=76,ξ的分布列如下,则a=______.
答案:∵Eξ=76=0×a+1×13+2×16+3b∴b=16,∵P(ξ=0)+P(ξ=1)+P(ξ=2)+P(ξ=3)=1∴a+13+16+16=1∴a=13.故为:1331.设A={x|x2+4x=0},B={x|x2+2(a+1)x+a2-1=0},其中x∈R,如果A∩B=B,求实数a的取值范围。答案:解A={0,-4}∵A∩B=B
∴BA由x2+2(a+1)x+a2-1=0
得△=4(a+1)2-4(a2-1)=8(a+1)(1)当a<-1时△<0
B=φA(2)当a=-1时△=0
B={0}A(3)当a>-1时△>0
要使BA,则A=B∵0,-4是方程x2+2(a+1)x+a2-1=0的两根∴解之得a=1综上可得a≤-1或a=132.(选做题)方程ρ=cosθ与(t为参数)分别表示何种曲线(
)。答案:圆,双曲线33.若图中的直线l1,l2,l3的斜率分别为k1,k2,k3,则()
A.k1<k2<k3
B.k3<k1<k2
C.k3<k2<k1
D.k1<k3<k2
答案:D34.如果圆x2+y2+Gx+Ey+F=0与x轴相切于原点,那么()A.F=0,G≠0,E≠0B.E=0,F=0,G≠0C.G=0,F=0,E≠0D.G=0,E=0,F≠0答案:圆与x轴相切于原点,则圆心在y轴上,G=0,圆心的纵坐标的绝对值等于半径,F=0,E≠0.故选C.35.若函数f(x)对任意实数x都有f(x)<f(x+1),那么()A.f(x)是增函数B.f(x)没有单调递增区间C.f(x)没有单调递减区间D.f(x)可能存在单调递增区间,也可能存在单调递减区间答案:根据函数f(x)对任意实数x都有f(x)<f(x+1),画出一个满足条件的函数图象如右图所示;根据图象可知f(x)可能存在单调递增区间,也可能存在单调递减区间故选D.36.在直角梯形ABCD中,已知A(-5,-10),B(15,0),C(5,10),AD是腰且垂直两底,求顶点D的坐标.答案:设D(x,y),则∵DC∥AB,∴y-10x-5=0+1015+5,又∵DA⊥AB,∴y+10x+5•0+1015+5=-1.由以上方程组解得:x=-11,y=2.∴D(-11,2).37.已知,求证:答案:证明略解析:∵
∴①
又∵②
③由①②③得
∴,又不等式①、②、③中等号成立的条件分别为,,故不能同时成立,从而.38.如图,正方体ABCD-A1B1C1D1的棱长为3,点M在AB上,且AM=13AB,点P在平面ABCD上,且动点P到直线A1D1的距离与P到点M的距离相等,在平面直角
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
评论
0/150
提交评论