2023年上海电子信息职业技术学院高职单招(数学)试题库含答案解析_第1页
2023年上海电子信息职业技术学院高职单招(数学)试题库含答案解析_第2页
2023年上海电子信息职业技术学院高职单招(数学)试题库含答案解析_第3页
2023年上海电子信息职业技术学院高职单招(数学)试题库含答案解析_第4页
2023年上海电子信息职业技术学院高职单招(数学)试题库含答案解析_第5页
已阅读5页,还剩34页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

长风破浪会有时,直挂云帆济沧海。住在富人区的她2023年上海电子信息职业技术学院高职单招(数学)试题库含答案解析(图片大小可自由调整)全文为Word可编辑,若为PDF皆为盗版,请谨慎购买!第1卷一.综合题(共50题)1.一个十二面体共有8个顶点,其中2个顶点处各有6条棱,其它顶点处都有相同的棱,则其它顶点处的棱数为______.答案:此十二面体如右图,数形结合可得则其它顶点处的棱数为4故为42.集合A={1,2}的子集有几个()A.2B.4C.3D.1答案:集合A={1,2}的子集有:?,{2},{1},{2,1}共4个.故选B.3.已知原点O(0,0),则点O到直线4x+3y+5=0的距离等于

______.答案:利用点到直线的距离公式得到d=|5|42+32=1,故为1.4.“a>2且b>2”是“a+b>4且ab>4”的()A.充分非必要条件B.必要非充分条件C.充要条件D.既不充分也不必要条件答案:若a>2且b>2,则必有a+b>4且ab>4成立,故充分性易证若a+b>4且ab>4,如a=8,b=1,此时a+b>4且ab>4成立,但不能得出a>2且b>2,故必要性不成立由上证明知“a>2且b>2”是“a+b>4且ab>4”的充分不必要条件,故选A5.已知向量a=(-2,1),b=(-3,-1),若单位向量c满足c⊥(a+b),则c=______.答案:设c=(x,y),∵向量a=(-2,1),b=(-3,-1),单位向量c满足c⊥(a+b),∴c•a+c•b=0,∴-2x+y-3x-y=0,解得x=0,∴c=(0,y),∵c是单位向量,∴0+y2=1,∴y=±1.故c=(0,1),或c=(0,-1).故为:(0,1)或(0,-1).6.设D为△ABC的边AB上一点,P为△ABC内一点,且满足AD=23AB,AP=AD+14BC,则S△APDS△ABC=()A.29B.16C.754D.427答案:由题意,AP=AD+DP,AP=AD+14BC∴DP=14BC∴三角形ADP的高三角形ABC=ADAB=23∴S△APDS△ABC=23×14=16故选B.7.已知2,4,2x,4y四个数的平均数是5而5,7,4x,6y四个数的平均数是9,则xy的值是______.答案:因为2,4,2x,4y四个数的平均数是5,则2+4+2x+4y=4×5,又由5,7,4x,6y四个数的平均数是9,则5+7+4x+6y=4×9,x与y满足的关系式为x+2y=72x+3y=12解得x=3y=2故为6.8.设a,b,c都是正数,求证:

(1)(a+b+c)≥9;

(2)(a+b+c)≥.答案:证明略解析:证明

(1)∵a,b,c都是正数,∴a+b+c≥3,++≥3.∴(a+b+c)≥9,当且仅当a=b=c时,等号成立.(2)∵(a+b)+(b+c)+(c+a)≥3,又≥,∴(a+b+c)≥,当且仅当a=b=c时,等号成立.9.在直角坐标系中,x=-1+3cosθy=2+3sinθ,θ∈[0,2π],所表示曲线的解析式是:______.答案:由题意并根据cos2θ+sin2θ=1

可得,(x+13)2+(y-23)2=1,即(x+1)2+(y-2)2=9,故为(x+1)2+(y-2)2=9.解析:在直角坐标系中,10.若数列{an}是等差数列,对于bn=1n(a1+a2+…+an),则数列{bn}也是等差数列.类比上述性质,若数列{cn}是各项都为正数的等比数列,对于dn>0,则dn=______时,数列{dn}也是等比数列.答案:在类比等差数列的性质推理等比数列的性质时,我们一般的思路有:由加法类比推理为乘法,由减法类比推理为除法,由算术平均数类比推理为几何平均数等,故我们可以由数列{cn}是等差数列,则对于bn=1n(a1+a2+…+an),则数列{bn}也是等差数列.类比推断:若数列{cn}是各项均为正数的等比数列,则当dn=nC1C2C3Cn时,数列{dn}也是等比数列.故为:nC1C2C3Cn11.求证:梯形两条对角线的中点连线平行于上、下底,且等于两底差的一半(用解析法证之).答案:证明见过程解析:求证:梯形两条对角线的中点连线平行于上、下底,且等于两底差的一半(用解析法证之).12.在正方体ABCD-A1B1C1D1中,若E为A1C1中点,则直线CE垂直于()A.ACB.BDC.A1DD.A1A答案:以A为原点,AB、AD、AA1所在直线分别为x,y,z轴建空间直角坐标系,设正方体棱长为1,则A(0,0,0),C(1,1,0),B(1,0,0),D(0,1,0),A1(0,0,1),E(12,12,1),∴CE=(-12,-12,1),AC=(1,1,0),BD=(-1,1,0),A1D=(0,1,-1),A1A=(0,0,-1),显然CE•BD=12-12+0=0,∴CE⊥BD,即CE⊥BD.

故选B.13.由小正方体木块搭成的几何体的三视图如图所示,则搭成该几何体的小正方体木块有()

A.6块

B.7块

C.8块

D.9块答案:B14.用反证法证明:已知x,y∈R,且x+y>2,则x,y中至少有一个大于1.答案:证明:用反证法,假设x,y均不大于1,即x≤1且y≤1,则x+y≤2,这与已知条件x+y>2矛盾,∴x,y中至少有一个大于1,即原命题得证.15.扇形周长为10,则扇形面积的最大值是()A.52B.254C.252D.102答案:设半径为r,弧长为l,则周长为2r+l=10,面积为s=12lr,因为10=2r+l≥22rl,所以rl≤252,所以s≤254故选B16.直线y=3x+1的斜率是()A.1B.2C.3D.4答案:因为直线y=3x+1是直线的斜截式方程,所以直线的斜率是3.故选C.17.若对n个向量a1,a2,…,an,存在n个不全为零的实数k1,k2…,kn,使得k1a1+k2a2+…+knan=0成立,则称向量a1,a2,…,an为“线性相关”.依此规定,请你求出一组实数k1,k2,k3的值,它能说明a1=(1,0),a2=(1,-1),a3=(2,2)“线性相关”.k1,k2,k3的值分别是______(写出一组即可).答案:设a1=(1,0),a2=(1,-1),a3=(2,2)“线性相关”.则存在实数,k1,k2,k3,使k1a1+k2a2+k3a3=0∵a1=(1,0),a2=(1,-1),a3=(2,2)∴k1+k2+2k3=0,且-k2+2k3=0令k3=1,则k2=2,k1=-4故为:-4,2,118.与原数据单位不一样的是()

A.众数

B.平均数

C.标准差

D.方差答案:D19.如图,AB是⊙O的直径,点D在AB的延长线上,BD=OB,CD与⊙O切于C,那么∠CAB═______.答案:连接OC,BC.∵CD是切线,∴OC⊥CD.∵BD=OB,∴BC=OB=OC.∴∠ABC=60°.∵AB是直径,∴∠ACB=90°,∴∠CAB=30°故为:30°20.(理)已知向量=(3,5,-1),=(2,2,3),=(4,-1,-3),则向量2-3+4的坐标为()

A.(16,0,-23)

B.(28,0,-23)

C.(16,-4,-1)

D.(0,0,9)答案:A21.实数系的结构图如图所示,其中1、2、3三个方格中的内容分别为()

A.有理数、零、整数

B.有理数、整数、零

C.零、有理数、整数

D.整数、有理数、零

答案:B22.已知a,b,c是空间的一个基底,且实数x,y,z使xa+yb+zc=0,则x2+y2+z2=______.答案:∵a,b,c是空间的一个基底∴a,b,c两两不共线∵xa+yb+zc=0∴x=y=z=0∴x2+y2+z2=0故为:023.点P从(2,0)出发,沿圆x2+y2=4按逆时针方向运动弧长到达点Q,则点Q的坐标为()

A.(-1,

)

B.(-,

-1)

C.(-1,

-)

D.(-,

1)答案:C24.用“辗转相除法”求得和的最大公约数是(

)A.B.C.D.答案:D解析:是和的最大公约数,也就是和的最大公约数25.下列图形中不一定是平面图形的是()

A.三角形

B.四边相等的四边形

C.梯形

D.平行四边形答案:B26.已知双曲线的顶点到渐近线的距离为2,焦点到渐近线的距离为6,则该双曲线的离心率为

______.答案:如图,过双曲线的顶点A、焦点F分别向其渐近线作垂线,垂足分别为B、C,则:|OF||OA|=|FC||AB|?ca=62=3.故为327.以抛物线y2=2px(p>0)的焦半径|PF|为直径的圆与y轴位置关系是______.答案:根据抛物线定义可知|PF|=p2,而圆的半径为p2,圆心为(p2,0),|PF|正好等于所求圆的半径,进而可推断圆与y轴位置关系是相切.28.若矩阵满足下列条件:①每行中的四个数所构成的集合均为{1,2,3,4};②四列中有且只有两列的上下两数是相同的.则这样的不同矩阵的个数为()

A.24

B.48

C.144

D.288答案:C29.已知两点A(2,1),B(3,3),则直线AB的斜率为()

A.2

B.

C.

D.-2答案:A30.若命题P(n)对n=k成立,则它对n=k+2也成立,又已知命题P(2)成立,则下列结论正确的是()

A.P(n)对所有自然数n都成立

B.P(n)对所有正偶数n成立

C.P(n)对所有正奇数n都成立

D.P(n)对所有大于1的自然数n成立答案:B31.已知sint+cost=1,设s=cost+isint,求f(s)=1+s+s2+…sn.答案:sint+cost=1∴(sint+cost)2=1+2sint?cost=1∴2sint?cost=sin2t=0则cost=0,sint=1或cost=1,sint=0,当cost=0,sint=1时,s=cost+isint=i则f(s)=1+s+s2+…sn=1+i,n=4k+1i,n=4k+20,n=4k+31,n=4(k+1)(k∈N+)当cost=1,sint=0时,s=cost+isint=1则f(s)=1+s+s2+…sn=n+132.下表是降耗技术改造后生产甲产品过程中记录的产量x(吨)与相应的生产能耗y(吨标准煤)的几组对应数据,根据表中提供的数据,求出y关于x的线性回归方程.y=0.7x+0.35,那么表中m的值为______.

x3456y2.5m44.5答案:∵根据所给的表格可以求出.x=3+4+5+64=4.5,.y=2.5+m+4+4.54=11+m4∵这组数据的样本中心点在线性回归直线上,∴11+m4=0.7×4.5+0.35,∴m=3,故为:333.袋子A和袋子B均装有红球和白球,从A中摸出一个红球的概率是13,从B中摸出一个红球的概率是P.

(1)从A中有放回地摸球,每次摸出一个,共摸5次,求恰好有3次摸到红球的概率;

(2)若A、B两个袋子中的总球数之比为1:2,将A、B中的球装在一起后,从中摸出一个红球的概率为25,求P的值.答案:(1)每次从A中摸一个红球的概率是13,摸不到红球的概率为23,根据独立重复试验的概率公式,故共摸5次,恰好有3次摸到红球的概率为:P=C35(13)3(23)2=10×127×49=40243.(2)设A中有m个球,A、B两个袋子中的球数之比为1:2,则B中有2m个球,∵将A、B中的球装在一起后,从中摸出一个红球的概率是25,∴13m+2mp3m=25,解得p=1330.34.为了了解某地母亲身高x与女儿身高Y的相关关系,随机测得10对母女的身高如下表所示:

母亲身x(cm)159160160163159154159158159157女儿身Y(cm)158159160161161155162157162156计算x与Y的相关系数r≈0.71,通过查表得r的临界值r0.05=0.632,从而有______的把握认为x与Y之间具有线性相关关系,因而求回归直线方程是有意义的.通过计算得到回归直线方程为y═34.92+0.78x,因此,当母亲的身高为161cm时,可以估计女儿的身高大致为______.答案:查对临界值表,由临界值r0.05=0.632,可得有95%的把握认为x与Y之间具有线性相关关系,回归直线方程为y=34.92+0.78x,因此,当x=161cm时,y=34.92+0.78x=34.92+0.78×161=161cm故为:95%,161cm.35.管理人员从一池塘中捞出30条鱼做上标记,然后放回池塘,将带标记的鱼完全混合于鱼群中.10天后,再捕上50条,发现其中带标记的鱼有2条.根据以上收据可以估计该池塘有______条鱼.答案:设该池塘中有x条鱼,由题设条件建立方程:30x=250,解得x=750.故为:750.36.若A={(x,y)|4x+y=6},B={(x,y)|3x+2y=7},则A∩B=()

A.{2,1}

B.{(2,1)}

C.{1,2}

D.{(1,2)}答案:D37.ab>0,则①|a+b|>|a|②|a+b|<|b|③|a+b|<|a-b|④|a+b|>|a-b|四个式中正确的是()

A.①②

B.②③

C.①④

D.②④答案:C38.设集合A和B都是自然数集合N,映射f:A→B把集合A中的元素n映射到集合B中的元素2n+n,则在映射f下,象20的原象是()A.2B.3C.4D.5答案:由2n+n=20求n,用代入法可知选C.故选C39.从单词“equation”选取5个不同的字母排成一排,含有“qu”(其中“qu”相连且顺序不变)的不同排列共有()A.120个B.480个C.720个D.840个答案:要选取5个字母时首先从其它6个字母中选3个有C63种结果,再与“qu“组成的一个元素进行全排列共有C63A44=480,故选B.40.已知函数f(x)满足:f(p+q)=f(p)f(q),f(1)=2,则:f(2)f(1)+f(4)f(3)+f(6)f(5)+f(8)f(7)+…+f(2006)f(2005)=______答案:∵f(p+q)=f(p)f(q),∴f(p+1)=f(p)f(1)即f(p+1)f(p)=f(1)=2,∴f(2)f(1)=2,f(4)f(3)=2…f(2006)f(2005)=2即f(2)f(1)+f(4)f(3)+f(6)f(5)+f(8)f(7)+…+f(2006)f(2005)=2×1003=2006故为:200641.在15个村庄中有7个村庄交通不方便,现从中任意选10个村庄,用X表示这10个村庄中交通不方便的村庄数,则P(X=4)=______.(用数字表示)答案:由题意P(X=4)=C47×C68C1015=7×6×53×2×1×8×72×115×14×13×12×115×4×3×2×1=140429故为:14042942.命题“p:任意x∈R,都有x≥2”的否定是______.答案:命题“任意x∈R,都有x≥2”是全称命题,否定时将量词对任意的x∈R变为存在实数x,再将不等号≥变为<即可.故为:存在实数x,使得x<2.43.已知△ABC三个顶点的坐标为A(1,3)、B(-1,-1)、C(-3,5),求这个三角形外接圆的方程.答案:设圆的方程为(x-a)2+(y-b)2=r2,则(1-a)2+(3-b)2=r2(-1-a)2+(-1-b)2=r2(-3-a)2+(5-b)2=r2,整理得a+2b-2=02a-b+6=0,解之得a=-2,b=2,可得r2=10,因此,这个三角形外接圆的方程为(x+2)2+(y-2)2=10.44.如图,半径为R的球O中有一内接圆柱.当圆柱的侧面积最大时,球的表面积与该圆柱的侧面积之差是______.

答案:设圆柱的上底面半径为r,球的半径与上底面夹角为α,则r=Rcosα,圆柱的高为2Rsinα,圆柱的侧面积为:2πR2sin2α,当且仅当α=π4时,sin2α=1,圆柱的侧面积最大,圆柱的侧面积为:2πR2,球的表面积为:4πR2,球的表面积与该圆柱的侧面积之差是:2πR2.故为:2πR245.极坐标方程pcosθ=表示()

A.一条平行于x轴的直线

B.一条垂直于x轴的直线

C.一个圆

D.一条抛物线答案:B46.已知菱形ABCD的顶点A,C在椭圆x2+3y2=4上,对角线BD所在直线的斜率为1.

(Ⅰ)当直线BD过点(0,1)时,求直线AC的方程;

(Ⅱ)当∠ABC=60°时,求菱形ABCD面积的最大值.答案:(Ⅰ)由题意得直线BD的方程为y=x+1.因为四边形ABCD为菱形,所以AC⊥BD.于是可设直线AC的方程为y=-x+n.由x2+3y2=4y=-x+n得4x2-6nx+3n2-4=0.因为A,C在椭圆上,所以△=-12n2+64>0,解得-433<n<433.设A,C两点坐标分别为(x1,y1),(x2,y2),则x1+x2=3n2,x1x2=3n2-44,y1=-x1+n,y2=-x2+n.所以y1+y2=n2.所以AC的中点坐标为(3n4,n4).由四边形ABCD为菱形可知,点(3n4,n4)在直线y=x+1上,所以n4=3n4+1,解得n=-2.所以直线AC的方程为y=-x-2,即x+y+2=0.(Ⅱ)因为四边形ABCD为菱形,且∠ABC=60°,所以|AB|=|BC|=|CA|.所以菱形ABCD的面积S=32|AC|2.由(Ⅰ)可得|AC|2=(x1-x2)2+(y1-y2)2=-3n2+162,所以S=34(-3n2+16)(-433<n<433).所以当n=0时,菱形ABCD的面积取得最大值43.47.某地区居民生活用电分为高峰和低谷两个时间段进行分时计价.该地区的电网销售电价表如图:高峰时间段用电价格表低谷时间段用电价格表高峰月用电量

(单位:千瓦时)高峰电价(单位:元/千瓦时)低谷月用电量

(单位:千瓦时)低谷电价(单位:

元/千瓦时)50及以下的部分0.56850及以下的部分0.288超过50至200的部分0.598超过50至200的部分0.318超过200的部分0.668超过200的部分0.388若某家庭5月份的高峰时间段用电量为200千瓦时,低谷时间段用电量为100千瓦时,则按这种计费方式该家庭本月应付的电费为______元(用数字作答)答案:高峰时间段用电的电费为50×0.568+150×0.598=28.4+89.7=118.1(元),低谷时间段用电的电费为50×0.288+50×0.318=14.4+15.9=30.3(元),本月的总电费为118.1+30.3=148.4(元),故为:148.4.48.用0.618法确定的试点,则经过(

)次试验后,存优范围缩小为原来的0.6184倍.答案:549.对于实数x、y,若|x-1|≤1,|y-2|≤1,则|x-2y+1|的最大值为______.答案:∵|x-2y+1|=|(x-1)-2(y-1)|≤|x-1|+2|(y-2)+1|≤|x-1|+2|y-2|+2,再由|x-1|≤1,|y-2|≤1可得|x-1|+2|y-2|+2≤1+2+2=5,故|x-2y+1|的最大值为5,故为5.50.三棱锥P-ABC中,M为BC的中点,以为基底,则可表示为()

A.

B.

C.

D.答案:D第2卷一.综合题(共50题)1.用反证法证明命题“如果a>b,那么a3>b3“时,下列假设正确的是()

A.a3<b3

B.a3<b3或a3=b3

C.a3<b3且a3=b3

D.a3>b3答案:B2.若函数y=ax(a>1)在[0,1]上的最大值与最小值之和为3,则a=______.答案:①当0<a<1时函数y=ax在[0,1]上为单调减函数∴函数y=ax在[0,1]上的最大值与最小值分别为1,a∵函数y=ax在[0,1]上的最大值与最小值和为3∴1+a=3∴a=2(舍)②当a>1时函数y=ax在[0,1]上为单调增函数∴函数y=ax在[0,1]上的最大值与最小值分别为a,1∵函数y=ax在[0,1]上的最大值与最小值和为3∴1+a=3∴a=2故为:2.3.函数y=ax2+1的图象与直线y=x相切,则a=______.答案:设切点为(x0,y0),∵y′=2ax,∴k=2ax0=1,①又∵点(x0,y0)在曲线与直线上,即y0=ax20+1y0=x0,②由①②得a=14.故为14.4.把函数y=4x的图象按平移到F′,F′的函数解析式为y=4x-2-2,则向量的坐标等于_____答案:(2,-2)解析:把函数y=4x的图象按平移到F′,F′的函数解析式为y=4x-2-2,则向量的坐标等于_____5.将6位志愿者分成4组,每组至少1人,分赴世博会的四个不同场馆服务,不同的分配方案有______种(用数字作答).答案:由题意,六个人分为四组,若有三个人一组,则四组人数为3,1,1,1,则不同的分法为C63=20种,若存在两人一组,则分法为2,2,1,1,不同的分法有C26×C24A22=45分赴世博会的四个不同场馆服务,不同的分配方案有(20+45)×A44=1560种故为:1560.6.三棱锥A-BCD中,平面ABD与平面BCD的法向量分别为n1,n2,若<n1,n2>=,则二面角A-BD-C的大小为()

A.

B.

C.或

D.或答案:C7.已知点P为△ABC所在平面上的一点,且,其中t为实数,若点P落在△ABC的内部,则t的取值范围是()

A.

B.

C.

D.答案:D8.用随机数表法从100名学生(男生35人)中选20人作样本,男生甲被抽到的可能性为()A.15B.2035C.35100D.713答案:由题意知,本题是一个等可能事件的概率,试验发生包含的事件是用随机数表法从100名学生选一个,共有100种结果,满足条件的事件是抽取20个,∴根据等可能事件的概率公式得到P=20100=15,故选A.9.如图,PA,PB切⊙O于

A,B两点,AC⊥PB,且与⊙O相交于

D,若∠DBC=22°,则∠APB═______.答案:连接AB根据弦切角有∠DBC=∠DAB=22°

∠PAC=∠DBA因为垂直∠DCB=90°根据外角∠ADB=∠DBC+∠DCB=112°

∵∠DBC=∠DAB∴∠DBA=180°-∠ADB-∠DAB=46°∴∠PAC=∠DBA=46°∴∠P=180°-∠PAC-∠PCA=44°故为:44°10.直角坐标xOy平面上,平行直线x=n(n=0,1,2,…,5)与平行直线y=n(n=0,1,2,…,5)组成的图形中,矩形共有()

A.25个

B.36个

C.100个

D.225个答案:D11.设集合A和B都是自然数集合N,映射f:A→B把集合A中的元素n映射到集合B中的元素2n+n,则在映射f下,象20的原象是()A.2B.3C.4D.5答案:由2n+n=20求n,用代入法可知选C.故选C12.若随机变量X~B(n,0.6),且E(X)=3,则P(X=1)的值是()

A.2×0.44

B.2×0.45

C.3×0.44

D.3×0.64答案:C13.(1)若三条直线2x+3y+8=0,x-y-1=0和x+ky=0相交于一点,则k的值为?

(2)若α∈N,又三点A(α,0),B(0,α+4),C(1,3)共线,求α的值.答案:(1)由2x+3y+8=0x-y-1=0解得x=-1,y=-2,∴直线2x+3y+8=0和x-y-1=0的交点为(-1,-2).∵三条直线2x+3y+8=0,x-y-1=0和x+ky=0相交于一点,∴(-1,-2)在直线x+ky=0上,∴-1-2k=0,解得k=-12.(2)A、B、C三点共线,说明直线AB与直线AC的斜率相等∴a+4-00-a=3-01-a,解得:a=214.直线(t为参数)的倾斜角等于()

A.

B.

C.

D.答案:A15.设求证:答案:证明见解析解析:证明:∵

∴∴,∴本题利用,对中每项都进行了放缩,从而得到可以求和的数列,达到化简的目的。16.盒中有10只螺丝钉,其中有3只是坏的,现从盒中随机地抽取4只,那么310为()A.恰有1只坏的概率B.恰有2只好的概率C.4只全是好的概率D.至多2只坏的概率答案:∵盒中有10只螺丝钉∴盒中随机地抽取4只的总数为:C104=210,∵其中有3只是坏的,∴所可能出现的事件有:恰有1只坏的,恰有2只坏的,恰有3只坏的,4只全是好的,至多2只坏的取法数分别为:C31×C73=105,C32C72=63,C74=35,C74+C31×C73+C32×C72=203∴恰有1只坏的概率分别为:105210=12,,恰有2只好的概率为63210=310,,4只全是好的概率为35210=16,至多2只坏的概率为203210=2930;故A,C,D不正确,B正确故选B17.抛物线y=3x2的焦点坐标是______.答案:化为标准方程为x2=13y,∴2p=13,∴p2=

112,∴焦点坐标是(0,112).故为(0,112)18.长为3的线段AB的端点A、B分别在x轴、y轴上移动,,则点C的轨迹是()

A.线段

B.圆

C.椭圆

D.双曲线答案:C19.已知=(3,4),=(5,12),与则夹角的余弦为()

A.

B.

C.

D.答案:A20.全称命题“任意x∈Z,2x+1是整数”的逆命题是()

A.若2x+1是整数,则x∈Z

B.若2x+1是奇数,则x∈Z

C.若2x+1是偶数,则x∈Z

D.若2x+1能被3整除,则x∈Z

E.若2x+1是整数,则x∈Z答案:A21.已知抛物线y2=4x上两定点A、B分别在对称轴两侧,F为焦点,且|AF|=2,|BF|=5,在抛物线的AOB一段上求一点P,使S△ABP最大,并求面积最大值.答案:不妨设点A在第一象限,B点在第四象限.如图.抛物线的焦点F(1,0),点A在第一象限,设A(x1,y1),y1>0,由|FA|=2得x1+1=2,x1=1,代入y2=4x中得y1=2,所以A(1,2),…(2分);同理B(4,-4),…(4分)由A(1,2),B(4,-4)得|AB|=(1-4)2+(2+4)2=35…(6分)直线AB的方程为y-2-4-2=x-14-1,化简得2x+y-4=0.…(8分)再设在抛物线AOB这段曲线上任一点P(x0,y0),且0≤x0≤4,-4≤y0≤2.则点P到直线AB的距离d=|2x0+y0-4|1+4=|2×y0

24+y0-4|5=|12(y0+1)2-92|5

…(9分)所以当y0=-1时,d取最大值9510,…(10分)所以△PAB的面积最大值为S=12×35×9510=274

…(11分)此时P点坐标为(14,-1).…(12分).22.已知直线的倾斜角为α,且cosα=45,则此直线的斜率是______.答案:∵直线l的倾斜角为α,cosα=45,∴α的终边在第一象限,故sinα=35故l的斜率为tanα=sinαcosα=34故为:3423.随机变量X的概率分布规律为P(X=n)=(n=1,2,3,4),其中a是常数,则P()的值为()

A.

B.

C.

D.

答案:D24.方程ax2+2x+1=0至少有一个负的实根的充要条件是()

A.0<a≤1

B.a<1

C.a≤1

D.0<a≤1或a<0答案:C25.下列关于算法的说法中正确的个数是()

①求解某一类问题的算法是唯一的;

②算法必须在有限步操作之后停止;

③算法的每一步操作必须是明确的,不能有歧义或模糊;

④算法执行后一定产生确定的结果.A.1B.2C.3D.4答案:由算法的概念可知:求解某一类问题的算法不是唯一的,故①不正确;算法是有限步,结果明确性,②④是正确的.对于③,算法的每一步操作必须是明确的,不能有歧义或模糊是正确的;故③正确.∴关于算法的说法中正确的个数是3.故选C.26.已知双曲线的焦点在y轴,实轴长为8,离心率e=2,过双曲线的弦AB被点P(4,2)平分;

(1)求双曲线的标准方程;

(2)求弦AB所在直线方程;

(3)求直线AB与渐近线所围成三角形的面积.答案:(1)∵双曲线的焦点在y轴,∴设双曲线的标准方程为y2a2-x2b2=1;∵实轴长为8,离心率e=2,∴a=4,c=42,∴b2=c2-a2=16.或∵实轴长为8,离心率e=2,∴双曲线为等轴双曲线,a=b=4.∴双曲线的标准方程为y216-x216=1.(2)设弦AB所在直线方程为y-2=k(x-4),A,B的坐标为A(x1,y1),B(x2,y2).∴k=y1-y2x1-x2,x1+x22=4,y1+y22=2;∴y1216-x1216=1

y2216-x2216=1⇒y12-y2216-x12-x2216=0⇒(y1-y2)(y1+y2)16-(x1-x2)(x1+x2)16=0代入x1+x2=8,y1+y2=4,得(y1-y2)×416-(x1-x2)×816=0,∴y1-y2x1-x2×14-12=0,∴14k-12=0,∴k=2;所以弦AB所在直线方程为y-2=2(x-4),即2x-y-6=0.(3)等轴双曲线y216-x216=1的渐近线方程为y=±x.∴直线AB与渐近线所围成三角形为直角三角形.又渐近线与弦AB所在直线的交点坐标分别为(6,6),(2,-2),∴直角三角形两条直角边的长度分别为62、22;∴直线AB与渐近线所围成三角形的面积S=12×62×22=12.27.一支田径队有男运动员112人,女运动员84人,用分层抽样的方法从全体男运动员中抽出了32人,则应该从女运动员中抽出的人数为()

A.12

B.13

C.24

D.28答案:C28.在△ABC中,AB=2,AC=1,D为BC的中点,则AD•BC=______.答案:AD•BC=AB+AC2•(AC-AB)=AC2-AB22=1-42=-32,故为:-32.29.如图是一个方形迷宫,甲、乙两人分别位于迷宫的A、B两处,两人同时以每一分钟一格的速度向东、西、南、北四个方向行走,已知甲向东、西行走的概率都为14,向南、北行走的概率为13和p,乙向东、西、南、北四个方向行走的概率均为q

(1)p和q的值;

(2)问最少几分钟,甲、乙二人相遇?并求出最短时间内可以相遇的概率.答案:(1)∵14+14+13+p=1,∴p=16,∵4q=1,∴q=14(2)t=2甲、乙两人可以相遇(如图,在C、D、E三处相遇)

设在C、D、E三处相遇的概率分别为PC、PD、PE,则:PC=(16×16)×(14×14)=1576PD=2(16×14)×2(14×14)=196PE=(14×14)×(14×14)=1256PC+PD+PE=372304即所求的概率为37230430.如果方程(1+i)x2-2(a+i)x+5-3i=0(a∈R)有实数解,求a的值.答案:设方程的实根为x0,则方程(1+i)x2-2(a+i)x+5-3i=0可化为(x20-2ax0+5)+(x20-2x0-3)i=0由复数相等的充要条件可得x20-2ax0+5=0①x20-2x0-3=0

②由②得x0=3或-1,代入①得a=73或-3∴a=73或-331.已知f(x)=,若f(x0)>1,则x0的取值范围是()

A.(0,1)

B.(-∞,0)∪(0,+∞)

C.(-∞,0)∪(1,+∞)

D.(1,+∞)答案:C32.已知命题p:∀x∈R,x2-x+1>0,则命题¬p

是______.答案:∵命题p:∀x∈R,x2-x+1>0,∴命题p的否定是“∃x∈R,x2-x+1≤0”故为:∃x∈R,x2-x+1≤0.33.抛物线y=14x2的焦点坐标是______.答案:抛物线y=14x2

即x2=4y,∴p=2,p2=1,故焦点坐标是(0,1),故为(0,1).34.在平行四边形ABCD中,E和F分别是边CD和BC的中点,若AC=λAE+μAF,其中λ、μ∈R,则λ+μ=______.答案:解析:设AB=a,AD=b,那么AE=12a+b,AF=a+12b,又∵AC=a+b,∴AC=23(AE+AF),即λ=μ=23,∴λ+μ=43.故为:43.35.把的图象按向量平移得到的图象,则可以是(

)A.B.C.D.答案:D解析:∵,∴要得到的图象,需将的图象向右平移个单位长度,故选D。36.设U={三角形},M={直角三角形},N={等腰三角形},则M∩N=______.答案:∵M={直角三角形},N={等腰三角形},∴M∩N={直角三角形且等腰三角形}={等腰直角三角形}故为{等腰直角三角形}37.已知向量a=(1,1)与b=(2,3),用坐标表示2a+b为______.答案:根据题意,a=(1,1)与b=(2,3),则2a+b=2(1,1)+(2,3)=(4,5);故为(4,5).38.已知:空间四边形ABCD,AB=AC,DB=DC,求证:BC⊥AD.答案:取BC的中点为E,∵AB=AC,∴AE⊥BC.∵DB=DC,∴DE⊥BC.这样,BC就和平面ADE内的两条相交直线AE、DE垂直,∴BC⊥面ADE,∴BC⊥AD.39.给出函数f(x)的一条性质:“存在常数M,使得|f(x)|≤M|x|对于定义域中的一切实数x均成立.”则下列函数中具有这条性质的函数是()A.y=1xB.y=x2C.y=x+1D.y=xsinx答案:根据|sinx|≤1可知|y|=|xsinx|=|x||sinx|≤|x|永远成立故选D.40.已知A(3,-2),B(-5,4),则以AB为直径的圆的方程是()A.(x-1)2+(y+1)2=25B.(x+1)2+(y-1)2=25C.(x-1)2+(y+1)2=100D.(x+1)2+(y-1)2=100答案:∵A(3,-2),B(-5,4),∴以AB为直径的圆的圆心为(-1,1),半径r=(-1-3)2+(1+2)2=5,∴圆的方程为(x+1)2+(y-1)2=25故选B.41.(Ⅰ)已知z∈C,且|z|-i=.z+2+3i(i为虚数单位),求复数z2+i的虚部.

(Ⅱ)已知z1=a+2i,z2=3-4i(i为虚数单位),且z1z2为纯虚数,求实数a的值.答案:(Ⅰ)设z=x+yi,代入方程|z|-i=.z+2+3i,得出x2+y2-i=x-yi+2+3i=(x+2)+(3-y)i,故有x2+y2=x+23-y=-1,解得x=3y=4,∴z=3+4i,复数z2+i=3+4i2+i=2+i,虚部为1(Ⅱ)z1z2=a+2i3-4i=3a-8+(4a+6)i25,且z1z2为纯虚数则3a-8=0,且4a+6≠0,解得a=8342.在图中,M、N是圆柱体的同一条母线上且位于上、下底面上的两点,若从M点绕圆柱体的侧面到达N,沿怎么样的路线路程最短?答案:沿圆柱体的母线MN将圆柱的侧面剪开辅平,得出圆柱的侧面展开图,从M点绕圆柱体的侧面到达N点,实际上是从侧面展开图的长方形的一个顶点M到达不相邻的另一个顶点N.而两点间以线段的长度最短.所以最短路线就是侧面展开图中长方形的一条对角线.如图所示.43.关于x的方程x2+4x+k=0有一个根为-2+3i(i为虚数单位),则实数k=______.答案:由韦达定理(一元二次方程根与系数关系)可得:x1•x2=k∵k∈Rx1=-2+3i,∴x2=-2-3i,则k=(-2-3i)(-2+3i)=13故为:1344.(文)椭圆的一个焦点与短轴的两端点构成一个正三角形,则该椭圆的离心率为()

A.

B.

C.

D.不确定答案:C45.不等式log12(x2-2x-15)>log12(x+13)的解集为______.答案:满足log0.5(x2-2x-15)>log0.5(x+13),得x2-2x-15<x+13x2-2x-15>0x+13>0解得:-4<x<-3,或5<x<7,则不等式log12(x2-2x-15)>log12(x+13)的解集为(-4,-3)∪(5,7)故为:(-4,-3)∪(5,7).46.点(2a,a-1)在圆x2+y2-2y-4=0的内部,则a的取值范围是()

A.-1<a<1

B.0<a<1

C.-1<a<

D.-<a<1答案:D47.两条平行直线3x+4y-12=0与ax+8y+11=0之间的距离为(

A.

B.

C.7

D.答案:D48.输入3个数,输出其中最大的公约数,编程序完成上述功能.答案:INPUT

m,n,kr=m

MOD

nWHILE

r<>0m=nn=rr=m

MOD

nWENDr=k

MOD

nWHILE

r<>0k=nn=rr=k

MOD

nWENDPRINT

nEND49.不等式log2(x+1)<1的解集为()

A.{x|0<x<1}

B.{x|-1<x≤0}

C.{x|-1<x<1}

D.{x|x>-1}答案:C50.如图,正方体ABCD-A1B1C1D1中,点E是棱BC的中点,点F

是棱CD上的动点.

(Ⅰ)试确定点F的位置,使得D1E⊥平面AB1F;

(Ⅱ)当D1E⊥平面AB1F时,求二面角C1-EF-A的余弦值以及BA1与面C1EF所成的角的大小.答案:(I)由题意可得:以A为原点,分别以直线AB、AD、AA1为x轴、y轴、z轴建立空间直角坐标系,不妨设正方体的棱长为1,且DF=x,则A1(0,0,1),A(0,0,0),B(1,0,0),D(0,1,0),B1(1,0,1),D1(0,1,1),E(1,12,0),F(x,1,0)所以D1E=(1,-12,-1),AB1=(1,0,1),AF=(x,1,0)由D1E⊥面AB1F⇔D1E⊥AB1且D1E⊥AF,所以D1E•AB1=0D1E•AF=0,可解得x=12所以当点F是CD的中点时,D1E⊥平面AB1F.(II)当D1E⊥平面AB1F时,F是CD的中点,F(12,1,0)由正方体的结构特征可得:平面AEF的一个法向量为m=(0,0,1),设平面C1EF的一个法向量为n=(x,y,z),在平面C1EF中,EC1=(0,12,1),EF=(-12,12,0),所以EC1•n=0EF•n

=0,即y=-2zx=y,所以取平面C1EF的一个法向量为n=(2,2,-1),所以cos<m,n>=-13,所以<m,n>=π-arccos13,又因为当把m,n都移向这个二面角内一点时,m背向平面AEF,而n指向平面C1EF,所以二面角C1-EF-A的大小为π-arccos13又因为BA1=(-1,0,1),所以cos<BA1,n>=-22,所以<BA1,n>=135∘,∴BA1与平面C1EF所成的角的大小为45°.第3卷一.综合题(共50题)1.若向量a=(1,1,x),b=(1,2,1),c=(1,1,1),满足条件(c-a)•(2b)=-2,则x=______.答案:c-a=(0,0,1-x),(c-a)•(2b)

=(2,4,2)•(0,0,1-x)=2(1-x)=-2,解得x=2,故为2.2.在程序语言中,下列符号分别表示什么运算*;\;∧;SQR;ABS?答案:“*”表示乘法运算;“\”表示除法运算;“∧”表示乘方运算;“SQR()”表示求算术平方根运算;“ABS()”表示求绝对值运算.3.给出下列结论:

(1)两个变量之间的关系一定是确定的关系;

(2)相关关系就是函数关系;

(3)回归分析是对具有函数关系的两个变量进行统计分析的一种常用方法;

(4)回归分析是对具有相关关系的两个变量进行统计分析的一种常用方法.

以上结论中,正确的有几个?()

A.1

B.2

C.3

D.4答案:A4.已知大于1的正数x,y,z满足x+y+z=33.

(1)求证:x2x+2y+3z+y2y+2z+3x+z2z+2x+3y≥32.

(2)求1log3x+log3y+1log3y+log3z+1log3z+log3x的最小值.答案:(1)由柯西不等式得,(x2x+2y+3z+y2y+2z+3z+z2z+2x+3y)[(x+2y+3z)+(y+2z+3x)+(z+2x+3y)]≥(x+y+z)2=27得:x2x+2y+3z+y2y+2z+3x+z2z+2x+3y≥32;(2)∵1log3x+log3y+1log3y+log3z+1log3z+log3x=1log3(xy)+1log3(yz)+1log3(zx),由柯西不等式得:(1log3(xy)+1log3(yz)+1log3(zx))(log3(xy)+log3(yz)+log3(zx)),由柯西不等式得:(1log3(xy)+1log3(yz)+1log3(zx))(log3(xy)+log3(yz)+log3(zx))≥9所以,(1log3(xy)+1log3(yz)+1log3(zx))≥9(log3(xy)+log3(yz)+log3(zx))=92log3(xyz),又∵33=x+y+z≥33xyz.∴xyz≤33.∴log3xyz≤32.得92log3xyz≥92×23=3所以,1log3x+log3y+1log3y+log3z+1log3z+log3x≥3当且仅当x=y=z=3时,等号成立.故所求的最小值是3.5.如图所示的程序框图,运行相应的程序,若输出S的值为254,则判断框①中应填入的条件是()A.n≤5B.n≤6C.n≤7D.n≤8答案:分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是输出满足条件S=2+22+23+…+2n=126时S的值∵2+22+23+…+27=254,故最后一次进行循环时n的值为7,故判断框中的条件应为n≤7.故选C.6.已知在△ABC中,A(2,-5,3),AB=(4,1,2),BC=(3,-2,5),则C点坐标为

______.答案:设C(x,y,z),则:

AC=AB+BC即:(x-2,y+5,z-3)=(4,1,2)+(3,-2,5)=(7,-1,7)所以得:x-2=7y+5=-1z-3=7,即x=9y=-6z=10故为:(9,-6,10)7.某教师出了一份三道题的测试卷,每道题1分,全班得3分、2分、1分和0分的学生所占比例分别为30%、50%、10%和10%,则全班学生的平均分为______分.答案:∵全班得3分、2分、1分和0分的学生所占比例分别为30%、50%、10%和10%,∴全班的平均分是3×30%+2×50%+1×10%+0×10%=2,故为:28.函数y=2|x|的定义域为[a,b],值域为[1,16],当a变动时,函数b=g(a)的图象可以是()A.

B.

C.

D.

答案:根据选项可知a≤0a变动时,函数y=2|x|的定义域为[a,b],值域为[1,16],∴2|b|=16,b=4故选B.9.已知,求证:答案:证明略解析:∵

∴①

又∵②

③由①②③得

∴,又不等式①、②、③中等号成立的条件分别为,,故不能同时成立,从而.10.已知x+5y+3z=1,则x2+y2+z2的最小值为______.答案:证明:35(x2+y2+z2)×(1+25+9)≥(x+5y+3z)2=1∴x2+y2+z2≥135,则x2+y2+z2的最小值为135,故为:135.11.直线ax+by=1与圆x2+y2=1有两不同交点,则点P(a,b)与圆的位置关系为______.答案:圆心到直线ax+by=1的距离,1a2+b2,∵直线ax+by=1与圆x2+y2=1有两不同交点,∴1a2+b2<1即a2+b2>1.故为:点在圆外.12.如图,在复平面内,点A表示复数z的共轭复数,则复数z对应的点是()A.AB.BC.CD.D答案:两个复数是共轭复数,两个复数的实部相同,下部相反,对应的点关于x轴对称.所以点A表示复数z的共轭复数的点是B.故选B.13.AB是圆O的直径,EF切圆O于C,AD⊥EF于D,AD=2,AB=6,则AC长为()

A.

B.3

C.2

D.2答案:A14.如图是一几何体的三视图,正视图是一等腰直角三角形,且斜边BD长为2;侧视图一直角三角形;俯视图为一直角梯形,且AB=BC=1,则异面直线PB与CD所成角的正切值是()A.1B.2C.12D.12答案:取AD的中点E,连接BE,PE,CE,根据题意可知BE∥CD,∴∠PBE为异面直线PB与CD所成角根据条件知,PE=1,BE=2,PE⊥BE∴tan∠PBE=12故选C.15.甲、乙两人投篮,投中的概率分别为0.6,0.7,若两人各投2次,则两人都投中1次的概率为______.答案:两人都投中1次的概率为C210.6×0.4×C210.7×0.3=0.2016故为:0.201616.把平面上一切单位向量归结到共同的起点,那么这些向量的终点所构成的图形是

______.答案:把平面上一切单位向量归结到共同的起点,那么这些向量的终点到起点的距离都等于1,所以,由圆的定义得,这些向量的终点所构成的图形是半径为1的圆.17.已知a=0.80.7,b=0.80.9,c=1.20.8,则a、b、c按从小到大的顺序排列为

______.答案:由指数函数y=0.8x知,∵0.7<0.9,∴0.80.9<0.80.7<1,即b<a,又c=1.20.8>1,∴b<a<c.b<a<c18.已知P(B|A)=,P(A)=,则P(AB)等于()

A.

B.

C.

D.答案:C19.已知R为实数集,Q为有理数集.设函数f(x)=0,(x∈CRQ)1,(x∈Q),则()A.函数y=f(x)的图象是两条平行直线B.limx→∞f(x)=0或limx→∞f(x)=1C.函数f[f(x)]恒等于0D.函数f[f(x)]的导函数恒等于0答案:函数y=f(x)的图象是两条平行直线上的一些孤立的点,故A不正确;函数f(x)的极限只有唯一的值,左右极限不等,则该函数不存在极限,故B不正确;若x是无理数,则f(x)=0,f[f(x)]=f(0)=1,故C不正确;∵f[f(x)]=1,∴函数f[f(x)]的导函数恒等于0,故D正确;故选D.20.下列特殊命题中假命题的个数是()

①有的实数是无限不循环小数;

②有些三角形不是等腰三角形;

③有的菱形是正方形.

A.0

B.1

C.2

D.3答案:B21.平行线l1:3x-2y-5=0与l2:6x-4y+3=0之间的距离为______.答案:将l1:3x-2y-5=0化成6x-4y-10=0∴l1:3x-2y-5=0与l2:6x-4y+3=0之间的距离为d=|-10-3|62+(-4)2=1352=132故为:13222.有50件产品编号从1到50,现在从中抽取抽取5件检验,用系统抽样确定所抽取的编号为()

A.5,10,15,20,25

B.5,15,20,35,40

C.5,11,17,23,29

D.10,20,30,40,50答案:D23.若复数z=(2-i)(a-i),(i为虚数单位)为纯虚数,则实数a的值为______.答案:z=(2-i)(a-i)=2a-1-(2+a)i∵若复数z=(2-i)(a-i)为纯虚数,∴2a-1=0,a+2≠0,∴a=12故为:1224.若向量a、b的夹角为150°,|a|=3,|b|=4,则|2a+b|=______.答案:|2a+b|=(2a+b)2=4a2+b2+4a?b=12+16+4×3×4×cos150°=2.故为:225.设a>2,给定数列{xn},其中x1=a,xn+1=x2n2(xn-1)(n=1,2…)求证:

(1)xn>2,且xn+1xn<1(n=1,2…);

(2)如果a≤3,那么xn≤2+12n-1(n=1,2…).答案:证明:(1)①当n=1时,∵x2=x122(x1-1)=x1+(2-x1)x12(x1-1),x2=x122(x1-1)=4(x1-1)+x12

-4x1+42(x1-1)=2+(x1-2)22(x1-1),x1=a>2,∴2<x2<x1.结论成立.②假设n=k时,结论成立,即2<xk+1<xk(k∈N+),则xk+2=xk+122(xk+1-1)=xk+1+(2-xk+1)xk+12(xk+1-1)>xk+1,xk+2=xk+122(xk+1-1)=2+(xk+1-2)22(xk+1-1)>2.∴2<xk+2<xk+1,综上所述,由①②知2<xn+1<xn.∴xn>2且xn+1xn<1.(2)由条件x1=a≤3知不等式当n=1时成立假设不等式当n=k(k≥1)时成立当n=k+1时,由条件及xk>2知xk+1≤1+12k⇔x2k≤2(xk-1)(2+12k)⇔x2k-2(2+12k)xk+2(2+12k)≤0⇔(xk-2)[xk-(2+12k-1)]≤0,再由xk>2及归纳假设知,上面最后一个不等式一定成立,所以不等式xk+1≤2+12k也成立,从而不等式xn≤2+12n-1对所有的正整数n成立26.设点P对应的复数为-3+3i,以原点为极点,实轴正半轴为极轴建立极坐标系,则点P的极坐标为()

A.(3,π)

B.(-3,π)

C.(3,π)

D.(-3,π)答案:A27.已知两条直线a1x+b1y+1=0和a2x+b2y+1=0都过点A(2,3),则过两点P1(a1,b1),P2(a2,b2)的直线方程为______.答案:∵A(2,3)是直线a1x+b1y+1=0和a2x+b2y+1=0的公共点,∴2a1+3b1+1=0,且2a2+3b2+1=0,即两点P1(a1,b1),P2(a2,b2)的坐标都适合方程2x+3y+1=0,∴两点(a1,b1)和(a2,b2)都在同一条直线2x+3y+1=0上,故点(a1,b1)和(a2,b2)所确定的直线方程是2x+3y+1=0,故为:2x+3y+1=0.28.求过点A(2,3)且被两直线3x+4y-7=0,3x+4y+8=0截得线段为32的直线方程.答案:设所求直线l的斜率为k,∵|MN|=32,又在Rt△MNB中,|MB|=3,∴∠MNB=45°,即2条直线的夹角为45°,∴|

k-(-34)1+k(-34)|=tan45°=1,解得k=17,或k=-7,所求直线的方程为y-3=17(x-2),或y-3=-7(x-2),即x-7y+19=0,或7x+y-17=0.29.在极坐标系中,过点(22,π4)作圆ρ=4sinθ的切线,则切线的极坐标方程是______.答案:(22,π4)的直角坐标为:(2,2),圆ρ=4sinθ的直角坐标方程为:x2+y2-4y=0;显然,圆心坐标(0,2),半径为:2;所以过(2,2)与圆相切的直线方程为:x=2,所以切线的极坐标方程是:ρcosθ=2故为:ρcosθ=230.Direchlet函数定义为:D(t)=1,t∈Q0,t∈CRQ,关于函数D(t)的性质叙述不正确的是()A.D(t)的值域为{0,1}B.D(t)为偶函数C.D(t)不是周期函数D.D(t)不是单调函数答案:函数D(t)是分段函数,值域是两段的并集,所以值域为{0,1};有理数和无理数正负关于原点对称,所以函数D(t)的图象关于y轴对称,所以函数是偶函数;对于不同的有理数x对应的函数值相等,所以函数不是单调函数;因为任取一个非0有理数,都有有理数加有理数为有理数,有理数加无理数为无理数,所以函数D(t)的图象周期出现,所以函数是周期函数,所以选项C不正确.故选C.31.已知a=3i+2j-k,b=i-j+2k,则5a与3b的数量积等于______.答案:a=3i+2j-k=(3,2,-1),5a=(15,10,-5)b=i-j+2k=(1,-1,2),3b=(3,-3,6)5a•3b=15×3+10×(-3)+(-5)×6=-15故为:-1532.已知|a|=3,|b|=2,a与b的夹角为300,则|a+b|等于()A.13B.15C.17D.19答案:∵|a|=3,|b|=2,a与b的夹角为300,∴a?b=|a||b|cos30°=2×3×32=3则|a+b|=a2+2a?b+b2=13故选A33.(文)若抛物线y2=2px的焦点与椭圆x26+y22=1的右焦点重合,则实数p的值是______.答案:∵x26+y22=1

中a2=6,b2=2,∴c2=4,c=2∴右焦点坐标为(2,0)∵抛物线y2=2px的焦点与椭圆x26+y22=1的右焦点重合∴抛物线y2=2px中p=4故为434.设D为△ABC的边AB上一点,P为△ABC内一点,且满足AD=23AB,AP=AD+14BC,则S△APDS△ABC=()A.29B.16C.754D.427答案:由题意,AP=AD+DP,AP=AD+14BC∴DP=14BC∴三角形ADP的高三角形ABC=ADAB=23∴S△APDS△ABC=23×14=16故选B.35.设A、B、C表示△ABC的三个内角的弧度数,a,b,c表示其对边,求证:aA+bB+cCa+b+c≥π3.答案:证明:法一、不妨设A>B>C,则有a>b>c由排序原理:顺序和≥乱序和∴aA+bB+cC≥aB+bC+cAaA+bB+cC≥aC+bA+cBaA+bB+cC=aA+bB+cC上述三式相加得3(aA+bB+cC)≥(A+B+C)(a+b+c)=π(a+b+c)∴aA+bB+cCa+b+c≥π3.法二、不妨设A>B>C,则有a>b>c,由排序不等式aA+bB+cC3≥A+B+C3?a+

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论