Google搜索与Inter网的信息检索_第1页
Google搜索与Inter网的信息检索_第2页
Google搜索与Inter网的信息检索_第3页
Google搜索与Inter网的信息检索_第4页
Google搜索与Inter网的信息检索_第5页
已阅读5页,还剩85页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

Google搜索与

Inter网的信息检索

马志明

May16,2008Email:mazm@/member/mazhiming/index.html约有626,000项符合中国科学院数学与系统科学研究院的查询结果,以下是第1-100项。

(搜索用时0.45

秒)Howcangooglemakearankingof626,000pagesin0.45seconds?Amaintaskof

Internet(Web)

InformationRetrieval

=DesignandAnalysisof

SearchEngine(SE)Algorithm

involvingplentyofMathematicsHITS

PageRank1998JonKleinbergCornellUniversity

SergeyBrinandLarryPageStanfordUniversityNevanlinnaPrize(2006)

JonKleinberg

OneofKleinberg‘smostimportantresearchachievementsfocusesontheinternetworkstructureoftheWorldWideWeb.Priorto

Kleinberg‘swork,searchenginesfocusedonlyonthecontentofwebpages,notonthelinkstructure.Kleinbergintroducedtheideaof“authorities”and“hubs”:Anauthorityisawebpagethatcontains

informationonaparticulartopic,andahubisapagethatcontainslinksto

manyauthorities.Zhuzihuthesis.pdfPage

Rank,therankingsystem

usedbytheGooglesearch

engine.

Queryindependentcontentindependent.usingonlythewebgraphstructurePage

Rank,therankingsystemusedbytheGooglesearchengine.

PageRankasaFunctionoftheDampingFactorPaoloBoldiMassimoSantiniSebastianoVignaDSI,UniversitàdegliStudidiMilanoWWW2005paper3.1Choosingthedampingfactor3GeneralBehaviour3.2Gettingcloseto1

canwesomehowcharacterisethepropertiesof?whatmakes

differentfromtheother(infinitelymany,ifPisreducible)limitdistributionsofP?

isthelimitdistributionofPwhenthestartingdistributionisuniform,thatis,Conjecture1

:

Website

provideplentyofinformation:

pagesinthesamewebsitemaysharethesameIP,runonthesamewebserveranddatabaseserver,andbeauthored/maintainedbythesamepersonororganization.

theremightbehighcorrelationsbetweenpagesinthesamewebsite,intermsofcontent,pagelayoutandhyperlinks.

websitescontainhigherdensityofhyperlinksinsidethem(about75%)andlowerdensityofedgesinbetween.HostGraphlosesmuchtransitioninformation

Canasurferjumpfrompage5ofsite1toapageinsite2?From:s06-pc-chairs-email@[mailto:s06-pc-chairs-Sent:2006年4月4日8:36

To:Tie-YanLiu;wangying@;fengg03@;ybao@;mazm@

Subject:[SIGIR2006]YourPaper#191

Title:AggregateRank:BringOrdertoWebSites

Congratulations!!29thAnnual

International

Conferenceon

Research&DevelopmentonInformationRetrieval(SIGIR’06,August6–11,2006,Seattle,Washington,USA).RankingWebsites,

aProbabilisticView

YingBao,GangFeng,Tie-YanLiu,Zhi-MingMa,andYingWang

InternetMathematics,

Volume3(2007),Issue3-WesuggestevaluatingtheimportanceofawebsitewiththemeanfrequencyofvisitingthewebsitefortheMarkovchainontheInternetGraphdescribingrandomsurfing.

WeshowthatthismeanfrequencyisequaltothesumofthePageRanksofallthewebpagesinthatwebsite(henceisreferredasPageRankSum)

Weproposeanovelalgorithm(AggregateRankAlgorithm)basedonthetheoryofstochasticcomplement

tocalculatetherankofawebsite.TheAggregateRankAlgorithmcanapproximatethePageRankSumaccurately,whilethecorrespondingcomputationalcomplexityismuchlowerthanPageRankSum

Byconstructingreturn-timeMarkovchainsrestrictedtoeachwebsite,wedescribealsotheprobabilisticrelationbetweenPageRankandAggregateRank.

ThecomplexityandtheerrorboundofAggregateRankAlgorithmwithexperimentsofrealdadaarediscussedattheendofthepaper.nwebsinNsites,

Thestationarydistribution,knownasthePageRankvector,isgivenbyWemayrewritethestationarydistributionaswithasarowvectoroflength

Wedefinetheone-steptransitionprobabilityfromthewebsite

tothewebsite

bywhereeisandimensionalcolumnvectorofallones

TheN×NmatrixC(α)=(cij(α))isreferredtoasthecouplingmatrix,whoseelementsrepresentthetransitionprobabilitiesbetweenwebsites.ItcanbeprovedthatC(α)isanirreduciblestochasticmatrix,sothatitpossessesauniquestationaryprobabilityvector.Weuseξ(α)todenotethisstationaryprobability,whichcanbegottenfrom

SinceOnecaneasilycheckthatistheuniquesolutionto

WeshallreferastheAggregateRankThatis,theprobabilityofvisitingawebsiteisequaltothesumofPageRanksofallthepagesinthatwebsite.Thisconclusionisconsistenttoourintuition.thetransitionprobabilityfromSitoSjactuallysummarizesallthecasesthattherandomsurferjumpsfromanypageinSitoanypageinSjwithinone-steptransition.Therefore,thetransitioninthisnewHostGraphisinaccordancewiththerealbehavioroftheWebsurfers.Inthisregard,theso-calculatedrankfromthecouplingmatrixC(α)willbemorereasonablethanthosepreviousworks.Let

denotethenumberofvisitingthewebsite

duringthentimes,thatisWehaveAssumeastartingstateinwebsiteA,i.e.Itisclearthatallthevariables

arestoppingtimesforX.WedefineandinductivelyLet

denotethetransitionmatrixofthereturn-timeMarkovchainforsiteSimilarly,wehaveSinceThereforeSupposethatAggregateRank,i.e.thestationarydistributionofisBasedontheabovediscussions,thedirectapproachofcomputingtheAggregateRankξ(α)istoaccumulatePageRankvalues(denotedbyPageRankSum).However,thisapproachisunfeasiblebecausethecomputationofPageRankisnotatrivialtaskwhenthenumberofwebpagesisaslargeasseveralbillions.Therefore,Efficientcomputationbecomesasignificantproblem.1.Dividethen×nmatrix

intoN×NblocksaccordingtotheNsites.AggregateRank

Constructthestochasticmatrixforbychangingthediagonalelementsoftomakeeachrawsumupto1.3.Determinefrom4.Formanapproximation

tothecouplingmatrix

,byevaluating5.Determinethestationarydistributionof

anddenoteit

,i.e.,Experiments

Inourexperiments,thedatacorpusisthebenchmarkdatafortheWebtrackofTREC2003and2004,domainintheyearof2002.Itcontains1,247,753dataset.Thelargestwebsitecontains137,103webpageswhilethesmallestonecontainsonly1page.PerformanceEvaluationofRankingAlgorithmsbasedonKendall'sdistanceSimilaritybetweenPageRankSumandotherthreerankingresults.From:pcchairs@

Sent:Thursday,April03,20089:48AM

DearYutingLiu,BinGao,Tie-YanLiu,YingZhang,ZhimingMa,ShuyuanHe,HangLi

Wearepleasedtoinformyouthatyourpaper

Title:BrowseRank:LettingWebUsersVoteforPageImportance

hasbeenacceptedfororalpresentationasafullpaperandforpublicationasaneightpaperintheproceedingsofthe31stAnnualInternationalACMSIGIR

ConferenceonResearch&DevelopmentonInformationRetrieval.

Congratulations!!BuildingmodelPropertiesofQprocess:Stationarydistribution:

Jumpingprobability:

EmbeddedMarkovchain:isaMarkovchainwiththetransitionprobabilitymatrixMainconclusion1

isthemeanofthestayingtimeonpagei.

Themoreimportantapageis,thelongerstayingtimeonitis.isthemeanofthefirstre-visittimeatpagei.Themoreimportantapageis,thesmallerthere-visittimeis,andthelargerthevisitfrequencyis.Mainconclusion2

isthestationarydistributionofThestationarydistributionofdiscretemodeliseasytocomputePowermethodforLogdataforFurtherquestionsHowaboutinhomogenousprocess?Statisticresultshow:differentperiodoftimepossessesdifferentvisitingfrequency.Poissonprocesseswithdifferentintensity.MarkedpointprocessHyperlinkisnotreliable.Users’realbehaviorshouldbeconsidered.RelevanceRankingManyfeaturesformeasuringrelevanceTermdistribution(anchor,URL,title,body,proximity,….)Recommendation&citation(PageRank,click-throughdata,…)StatisticsorknowledgeextractedfromwebdataQuestionsWhatistheoptimalrankingfunctiontocombinedifferentfeatures(orevidences)?Howtomeasurerelevance?LearningtoRankWhatistheoptimalweightingsforcombiningthevariousfeaturesUsemachinelearningmethodstolearntherankingfunctionHumanrelevancesystem(HRS)Relevanceverificationtests(RVT)Wei-YingMa,MicrosoftResearchAsiaLearningtoRankModelLearningSystemRankingSystemminLoss66Wei-YingMa,MicrosoftResearchAsiaLearningtoRank(Cont)

State-of-the-artalgorithmsforlearningtoranktakethepairwiseapproachRankingSVMRankBoostRankNet(employedatLiveSearch)67BreakdownWei-YingMa,MicrosoftResearchAsialearningtorankThegoaloflearningtorankistoconstructareal-valuedfunctionthatcangeneratearankingonthedocumentsassociatedwiththegivenquery.Thestate-of-the-artmethodstransformsthelearningproblemintothatofclassificationandthenperformsthelearningtask:Foreachquery,itisassumedthattherearetwocategoriesofdocuments:positiveandnegative(representingrelevantandirreverentwithrespecttothequery).Thendocumentpairsareconstructedbetweenpositivedocumentsandnegativedocuments.Inthetrainingprocess,thequeryinformationisactuallyignored.[5]Y.Cao,J.Xu,T.-Y.Liu,H.Li,Y.Huang,andH.-W.Hon.Adaptingrankingsvmtodocumentretrieval.InProc.ofSIGIR’06,pages186–193,2006.[11]T.Qin,T.-Y.Liu,M.-F.Tsai,X.-D.Zhang,andH.Li.Learningtosearchwebpageswithquery-levellossfunctions.TechnicalReportMSR-TR-2006-156,2006.Ascasestudies,weinvestigateRankingSVMandRankBoost.Weshowthatafterintroducing

query-levelnormalization

toitsobjectivefunction,RankingSVMwillhavequery-levelstability.ForRankBoost,thequery-levelstabilitycanbeachievedifweintroduceboth

query-levelnormalizationandregularization

toitsobjectivefunction.Were-representthelearningtorankproblembyintroducingtheconceptof‘query’and‘distributiongivenquery’intoitsmathematicalformulation.Moreprecisely,weassumethatqueriesaredrawnindependentlyfromaqueryspaceQaccordingtoan(unknown)probabilitydistributionItshouldbenotedthatif,thentheboundmakessense.Thisconditioncanbesatisfiedinmanypracticalcases.Ascasestudies,weinvestigateRankingSVMandRankBoost.Weshowthatafterintroducingquery-levelnormalizationtoitsobjectivefunction,RankingSVMwillhavequery-levelstability.ForRankBoost,thequery-levelstabilitycanbeachievedifweintroducebothquery-levelnormalizationandregularizationtoitsobjectivefunction.Theseanalysesagreelargelywithourexperimentsandtheexperimentsin[5]and[11].RankaggregationRankaggregationistocombinerankingresultsofentitiesfrommultiplerankingfunctionsinordertogenerateabetterone.Theindividualrankingfunctionsarereferredtoasbaserankers,orsimplyrankers.Score-basedaggregationRankaggregationcanbeclassifiedintotwocategories[2].Inthefirstcategory,theentitiesinindividualrankinglistsareassignedscoresandtherankaggregationfunctionisassumedtousethescores(denotedasscore-basedaggregation)[11][18][28].order-basedaggregation

Inthesecondcategory,onlytheordersoftheentitiesinindividualrankinglistsa

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论