版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
Google搜索与
Inter网的信息检索
马志明
May16,2008Email:mazm@/member/mazhiming/index.html约有626,000项符合中国科学院数学与系统科学研究院的查询结果,以下是第1-100项。
(搜索用时0.45
秒)Howcangooglemakearankingof626,000pagesin0.45seconds?Amaintaskof
Internet(Web)
InformationRetrieval
=DesignandAnalysisof
SearchEngine(SE)Algorithm
involvingplentyofMathematicsHITS
PageRank1998JonKleinbergCornellUniversity
SergeyBrinandLarryPageStanfordUniversityNevanlinnaPrize(2006)
JonKleinberg
OneofKleinberg‘smostimportantresearchachievementsfocusesontheinternetworkstructureoftheWorldWideWeb.Priorto
Kleinberg‘swork,searchenginesfocusedonlyonthecontentofwebpages,notonthelinkstructure.Kleinbergintroducedtheideaof“authorities”and“hubs”:Anauthorityisawebpagethatcontains
informationonaparticulartopic,andahubisapagethatcontainslinksto
manyauthorities.Zhuzihuthesis.pdfPage
Rank,therankingsystem
usedbytheGooglesearch
engine.
Queryindependentcontentindependent.usingonlythewebgraphstructurePage
Rank,therankingsystemusedbytheGooglesearchengine.
PageRankasaFunctionoftheDampingFactorPaoloBoldiMassimoSantiniSebastianoVignaDSI,UniversitàdegliStudidiMilanoWWW2005paper3.1Choosingthedampingfactor3GeneralBehaviour3.2Gettingcloseto1
canwesomehowcharacterisethepropertiesof?whatmakes
differentfromtheother(infinitelymany,ifPisreducible)limitdistributionsofP?
isthelimitdistributionofPwhenthestartingdistributionisuniform,thatis,Conjecture1
:
Website
provideplentyofinformation:
pagesinthesamewebsitemaysharethesameIP,runonthesamewebserveranddatabaseserver,andbeauthored/maintainedbythesamepersonororganization.
theremightbehighcorrelationsbetweenpagesinthesamewebsite,intermsofcontent,pagelayoutandhyperlinks.
websitescontainhigherdensityofhyperlinksinsidethem(about75%)andlowerdensityofedgesinbetween.HostGraphlosesmuchtransitioninformation
Canasurferjumpfrompage5ofsite1toapageinsite2?From:s06-pc-chairs-email@[mailto:s06-pc-chairs-Sent:2006年4月4日8:36
To:Tie-YanLiu;wangying@;fengg03@;ybao@;mazm@
Subject:[SIGIR2006]YourPaper#191
Title:AggregateRank:BringOrdertoWebSites
Congratulations!!29thAnnual
International
Conferenceon
Research&DevelopmentonInformationRetrieval(SIGIR’06,August6–11,2006,Seattle,Washington,USA).RankingWebsites,
aProbabilisticView
YingBao,GangFeng,Tie-YanLiu,Zhi-MingMa,andYingWang
InternetMathematics,
Volume3(2007),Issue3-WesuggestevaluatingtheimportanceofawebsitewiththemeanfrequencyofvisitingthewebsitefortheMarkovchainontheInternetGraphdescribingrandomsurfing.
WeshowthatthismeanfrequencyisequaltothesumofthePageRanksofallthewebpagesinthatwebsite(henceisreferredasPageRankSum)
Weproposeanovelalgorithm(AggregateRankAlgorithm)basedonthetheoryofstochasticcomplement
tocalculatetherankofawebsite.TheAggregateRankAlgorithmcanapproximatethePageRankSumaccurately,whilethecorrespondingcomputationalcomplexityismuchlowerthanPageRankSum
Byconstructingreturn-timeMarkovchainsrestrictedtoeachwebsite,wedescribealsotheprobabilisticrelationbetweenPageRankandAggregateRank.
ThecomplexityandtheerrorboundofAggregateRankAlgorithmwithexperimentsofrealdadaarediscussedattheendofthepaper.nwebsinNsites,
Thestationarydistribution,knownasthePageRankvector,isgivenbyWemayrewritethestationarydistributionaswithasarowvectoroflength
Wedefinetheone-steptransitionprobabilityfromthewebsite
tothewebsite
bywhereeisandimensionalcolumnvectorofallones
TheN×NmatrixC(α)=(cij(α))isreferredtoasthecouplingmatrix,whoseelementsrepresentthetransitionprobabilitiesbetweenwebsites.ItcanbeprovedthatC(α)isanirreduciblestochasticmatrix,sothatitpossessesauniquestationaryprobabilityvector.Weuseξ(α)todenotethisstationaryprobability,whichcanbegottenfrom
SinceOnecaneasilycheckthatistheuniquesolutionto
WeshallreferastheAggregateRankThatis,theprobabilityofvisitingawebsiteisequaltothesumofPageRanksofallthepagesinthatwebsite.Thisconclusionisconsistenttoourintuition.thetransitionprobabilityfromSitoSjactuallysummarizesallthecasesthattherandomsurferjumpsfromanypageinSitoanypageinSjwithinone-steptransition.Therefore,thetransitioninthisnewHostGraphisinaccordancewiththerealbehavioroftheWebsurfers.Inthisregard,theso-calculatedrankfromthecouplingmatrixC(α)willbemorereasonablethanthosepreviousworks.Let
denotethenumberofvisitingthewebsite
duringthentimes,thatisWehaveAssumeastartingstateinwebsiteA,i.e.Itisclearthatallthevariables
arestoppingtimesforX.WedefineandinductivelyLet
denotethetransitionmatrixofthereturn-timeMarkovchainforsiteSimilarly,wehaveSinceThereforeSupposethatAggregateRank,i.e.thestationarydistributionofisBasedontheabovediscussions,thedirectapproachofcomputingtheAggregateRankξ(α)istoaccumulatePageRankvalues(denotedbyPageRankSum).However,thisapproachisunfeasiblebecausethecomputationofPageRankisnotatrivialtaskwhenthenumberofwebpagesisaslargeasseveralbillions.Therefore,Efficientcomputationbecomesasignificantproblem.1.Dividethen×nmatrix
intoN×NblocksaccordingtotheNsites.AggregateRank
Constructthestochasticmatrixforbychangingthediagonalelementsoftomakeeachrawsumupto1.3.Determinefrom4.Formanapproximation
tothecouplingmatrix
,byevaluating5.Determinethestationarydistributionof
anddenoteit
,i.e.,Experiments
Inourexperiments,thedatacorpusisthebenchmarkdatafortheWebtrackofTREC2003and2004,domainintheyearof2002.Itcontains1,247,753dataset.Thelargestwebsitecontains137,103webpageswhilethesmallestonecontainsonly1page.PerformanceEvaluationofRankingAlgorithmsbasedonKendall'sdistanceSimilaritybetweenPageRankSumandotherthreerankingresults.From:pcchairs@
Sent:Thursday,April03,20089:48AM
DearYutingLiu,BinGao,Tie-YanLiu,YingZhang,ZhimingMa,ShuyuanHe,HangLi
Wearepleasedtoinformyouthatyourpaper
Title:BrowseRank:LettingWebUsersVoteforPageImportance
hasbeenacceptedfororalpresentationasafullpaperandforpublicationasaneightpaperintheproceedingsofthe31stAnnualInternationalACMSIGIR
ConferenceonResearch&DevelopmentonInformationRetrieval.
Congratulations!!BuildingmodelPropertiesofQprocess:Stationarydistribution:
Jumpingprobability:
EmbeddedMarkovchain:isaMarkovchainwiththetransitionprobabilitymatrixMainconclusion1
isthemeanofthestayingtimeonpagei.
Themoreimportantapageis,thelongerstayingtimeonitis.isthemeanofthefirstre-visittimeatpagei.Themoreimportantapageis,thesmallerthere-visittimeis,andthelargerthevisitfrequencyis.Mainconclusion2
isthestationarydistributionofThestationarydistributionofdiscretemodeliseasytocomputePowermethodforLogdataforFurtherquestionsHowaboutinhomogenousprocess?Statisticresultshow:differentperiodoftimepossessesdifferentvisitingfrequency.Poissonprocesseswithdifferentintensity.MarkedpointprocessHyperlinkisnotreliable.Users’realbehaviorshouldbeconsidered.RelevanceRankingManyfeaturesformeasuringrelevanceTermdistribution(anchor,URL,title,body,proximity,….)Recommendation&citation(PageRank,click-throughdata,…)StatisticsorknowledgeextractedfromwebdataQuestionsWhatistheoptimalrankingfunctiontocombinedifferentfeatures(orevidences)?Howtomeasurerelevance?LearningtoRankWhatistheoptimalweightingsforcombiningthevariousfeaturesUsemachinelearningmethodstolearntherankingfunctionHumanrelevancesystem(HRS)Relevanceverificationtests(RVT)Wei-YingMa,MicrosoftResearchAsiaLearningtoRankModelLearningSystemRankingSystemminLoss66Wei-YingMa,MicrosoftResearchAsiaLearningtoRank(Cont)
State-of-the-artalgorithmsforlearningtoranktakethepairwiseapproachRankingSVMRankBoostRankNet(employedatLiveSearch)67BreakdownWei-YingMa,MicrosoftResearchAsialearningtorankThegoaloflearningtorankistoconstructareal-valuedfunctionthatcangeneratearankingonthedocumentsassociatedwiththegivenquery.Thestate-of-the-artmethodstransformsthelearningproblemintothatofclassificationandthenperformsthelearningtask:Foreachquery,itisassumedthattherearetwocategoriesofdocuments:positiveandnegative(representingrelevantandirreverentwithrespecttothequery).Thendocumentpairsareconstructedbetweenpositivedocumentsandnegativedocuments.Inthetrainingprocess,thequeryinformationisactuallyignored.[5]Y.Cao,J.Xu,T.-Y.Liu,H.Li,Y.Huang,andH.-W.Hon.Adaptingrankingsvmtodocumentretrieval.InProc.ofSIGIR’06,pages186–193,2006.[11]T.Qin,T.-Y.Liu,M.-F.Tsai,X.-D.Zhang,andH.Li.Learningtosearchwebpageswithquery-levellossfunctions.TechnicalReportMSR-TR-2006-156,2006.Ascasestudies,weinvestigateRankingSVMandRankBoost.Weshowthatafterintroducing
query-levelnormalization
toitsobjectivefunction,RankingSVMwillhavequery-levelstability.ForRankBoost,thequery-levelstabilitycanbeachievedifweintroduceboth
query-levelnormalizationandregularization
toitsobjectivefunction.Were-representthelearningtorankproblembyintroducingtheconceptof‘query’and‘distributiongivenquery’intoitsmathematicalformulation.Moreprecisely,weassumethatqueriesaredrawnindependentlyfromaqueryspaceQaccordingtoan(unknown)probabilitydistributionItshouldbenotedthatif,thentheboundmakessense.Thisconditioncanbesatisfiedinmanypracticalcases.Ascasestudies,weinvestigateRankingSVMandRankBoost.Weshowthatafterintroducingquery-levelnormalizationtoitsobjectivefunction,RankingSVMwillhavequery-levelstability.ForRankBoost,thequery-levelstabilitycanbeachievedifweintroducebothquery-levelnormalizationandregularizationtoitsobjectivefunction.Theseanalysesagreelargelywithourexperimentsandtheexperimentsin[5]and[11].RankaggregationRankaggregationistocombinerankingresultsofentitiesfrommultiplerankingfunctionsinordertogenerateabetterone.Theindividualrankingfunctionsarereferredtoasbaserankers,orsimplyrankers.Score-basedaggregationRankaggregationcanbeclassifiedintotwocategories[2].Inthefirstcategory,theentitiesinindividualrankinglistsareassignedscoresandtherankaggregationfunctionisassumedtousethescores(denotedasscore-basedaggregation)[11][18][28].order-basedaggregation
Inthesecondcategory,onlytheordersoftheentitiesinindividualrankinglistsa
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 结婚接亲保障书
- 低压电缆招标要求
- 守护幸福拒绝背叛
- 装修合同范例
- 商务办公用品选购合约
- 保证书与承诺书在职场中的应用
- 钢结构项目分包合同
- 品牌年度服务合同培训
- 长期借款合同范本格式编写技巧模板
- 砌体工程劳务分包合同模板
- 高铁乘务礼仪培训
- 新能源汽车发展趋势报告-2024
- 二年级上册语文期末必考古诗、课文总复习
- 文书模板-《厂房光伏租赁合同》
- 工业自动化生产线操作手册
- 2024年就业协议书样本
- 物理学与人类文明学习通超星期末考试答案章节答案2024年
- 实验室安全准入教育学习通超星期末考试答案章节答案2024年
- 医学教程 《精神卫生法》解读
- 人教版小学三年级数学上册期末复习解答题应用题大全50题含答案
- 保健食品安全事故应急处置管理制度
评论
0/150
提交评论