版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
Google搜索与
Inter网的信息检索
马志明
May16,2008Email:mazm@/member/mazhiming/index.html约有626,000项符合中国科学院数学与系统科学研究院的查询结果,以下是第1-100项。
(搜索用时0.45
秒)Howcangooglemakearankingof626,000pagesin0.45seconds?Amaintaskof
Internet(Web)
InformationRetrieval
=DesignandAnalysisof
SearchEngine(SE)Algorithm
involvingplentyofMathematicsHITS
PageRank1998JonKleinbergCornellUniversity
SergeyBrinandLarryPageStanfordUniversityNevanlinnaPrize(2006)
JonKleinberg
OneofKleinberg‘smostimportantresearchachievementsfocusesontheinternetworkstructureoftheWorldWideWeb.Priorto
Kleinberg‘swork,searchenginesfocusedonlyonthecontentofwebpages,notonthelinkstructure.Kleinbergintroducedtheideaof“authorities”and“hubs”:Anauthorityisawebpagethatcontains
informationonaparticulartopic,andahubisapagethatcontainslinksto
manyauthorities.Zhuzihuthesis.pdfPage
Rank,therankingsystem
usedbytheGooglesearch
engine.
Queryindependentcontentindependent.usingonlythewebgraphstructurePage
Rank,therankingsystemusedbytheGooglesearchengine.
PageRankasaFunctionoftheDampingFactorPaoloBoldiMassimoSantiniSebastianoVignaDSI,UniversitàdegliStudidiMilanoWWW2005paper3.1Choosingthedampingfactor3GeneralBehaviour3.2Gettingcloseto1
canwesomehowcharacterisethepropertiesof?whatmakes
differentfromtheother(infinitelymany,ifPisreducible)limitdistributionsofP?
isthelimitdistributionofPwhenthestartingdistributionisuniform,thatis,Conjecture1
:
Website
provideplentyofinformation:
pagesinthesamewebsitemaysharethesameIP,runonthesamewebserveranddatabaseserver,andbeauthored/maintainedbythesamepersonororganization.
theremightbehighcorrelationsbetweenpagesinthesamewebsite,intermsofcontent,pagelayoutandhyperlinks.
websitescontainhigherdensityofhyperlinksinsidethem(about75%)andlowerdensityofedgesinbetween.HostGraphlosesmuchtransitioninformation
Canasurferjumpfrompage5ofsite1toapageinsite2?From:s06-pc-chairs-email@[mailto:s06-pc-chairs-Sent:2006年4月4日8:36
To:Tie-YanLiu;wangying@;fengg03@;ybao@;mazm@
Subject:[SIGIR2006]YourPaper#191
Title:AggregateRank:BringOrdertoWebSites
Congratulations!!29thAnnual
International
Conferenceon
Research&DevelopmentonInformationRetrieval(SIGIR’06,August6–11,2006,Seattle,Washington,USA).RankingWebsites,
aProbabilisticView
YingBao,GangFeng,Tie-YanLiu,Zhi-MingMa,andYingWang
InternetMathematics,
Volume3(2007),Issue3-WesuggestevaluatingtheimportanceofawebsitewiththemeanfrequencyofvisitingthewebsitefortheMarkovchainontheInternetGraphdescribingrandomsurfing.
WeshowthatthismeanfrequencyisequaltothesumofthePageRanksofallthewebpagesinthatwebsite(henceisreferredasPageRankSum)
Weproposeanovelalgorithm(AggregateRankAlgorithm)basedonthetheoryofstochasticcomplement
tocalculatetherankofawebsite.TheAggregateRankAlgorithmcanapproximatethePageRankSumaccurately,whilethecorrespondingcomputationalcomplexityismuchlowerthanPageRankSum
Byconstructingreturn-timeMarkovchainsrestrictedtoeachwebsite,wedescribealsotheprobabilisticrelationbetweenPageRankandAggregateRank.
ThecomplexityandtheerrorboundofAggregateRankAlgorithmwithexperimentsofrealdadaarediscussedattheendofthepaper.nwebsinNsites,
Thestationarydistribution,knownasthePageRankvector,isgivenbyWemayrewritethestationarydistributionaswithasarowvectoroflength
Wedefinetheone-steptransitionprobabilityfromthewebsite
tothewebsite
bywhereeisandimensionalcolumnvectorofallones
TheN×NmatrixC(α)=(cij(α))isreferredtoasthecouplingmatrix,whoseelementsrepresentthetransitionprobabilitiesbetweenwebsites.ItcanbeprovedthatC(α)isanirreduciblestochasticmatrix,sothatitpossessesauniquestationaryprobabilityvector.Weuseξ(α)todenotethisstationaryprobability,whichcanbegottenfrom
SinceOnecaneasilycheckthatistheuniquesolutionto
WeshallreferastheAggregateRankThatis,theprobabilityofvisitingawebsiteisequaltothesumofPageRanksofallthepagesinthatwebsite.Thisconclusionisconsistenttoourintuition.thetransitionprobabilityfromSitoSjactuallysummarizesallthecasesthattherandomsurferjumpsfromanypageinSitoanypageinSjwithinone-steptransition.Therefore,thetransitioninthisnewHostGraphisinaccordancewiththerealbehavioroftheWebsurfers.Inthisregard,theso-calculatedrankfromthecouplingmatrixC(α)willbemorereasonablethanthosepreviousworks.Let
denotethenumberofvisitingthewebsite
duringthentimes,thatisWehaveAssumeastartingstateinwebsiteA,i.e.Itisclearthatallthevariables
arestoppingtimesforX.WedefineandinductivelyLet
denotethetransitionmatrixofthereturn-timeMarkovchainforsiteSimilarly,wehaveSinceThereforeSupposethatAggregateRank,i.e.thestationarydistributionofisBasedontheabovediscussions,thedirectapproachofcomputingtheAggregateRankξ(α)istoaccumulatePageRankvalues(denotedbyPageRankSum).However,thisapproachisunfeasiblebecausethecomputationofPageRankisnotatrivialtaskwhenthenumberofwebpagesisaslargeasseveralbillions.Therefore,Efficientcomputationbecomesasignificantproblem.1.Dividethen×nmatrix
intoN×NblocksaccordingtotheNsites.AggregateRank
Constructthestochasticmatrixforbychangingthediagonalelementsoftomakeeachrawsumupto1.3.Determinefrom4.Formanapproximation
tothecouplingmatrix
,byevaluating5.Determinethestationarydistributionof
anddenoteit
,i.e.,Experiments
Inourexperiments,thedatacorpusisthebenchmarkdatafortheWebtrackofTREC2003and2004,domainintheyearof2002.Itcontains1,247,753dataset.Thelargestwebsitecontains137,103webpageswhilethesmallestonecontainsonly1page.PerformanceEvaluationofRankingAlgorithmsbasedonKendall'sdistanceSimilaritybetweenPageRankSumandotherthreerankingresults.From:pcchairs@
Sent:Thursday,April03,20089:48AM
DearYutingLiu,BinGao,Tie-YanLiu,YingZhang,ZhimingMa,ShuyuanHe,HangLi
Wearepleasedtoinformyouthatyourpaper
Title:BrowseRank:LettingWebUsersVoteforPageImportance
hasbeenacceptedfororalpresentationasafullpaperandforpublicationasaneightpaperintheproceedingsofthe31stAnnualInternationalACMSIGIR
ConferenceonResearch&DevelopmentonInformationRetrieval.
Congratulations!!BuildingmodelPropertiesofQprocess:Stationarydistribution:
Jumpingprobability:
EmbeddedMarkovchain:isaMarkovchainwiththetransitionprobabilitymatrixMainconclusion1
isthemeanofthestayingtimeonpagei.
Themoreimportantapageis,thelongerstayingtimeonitis.isthemeanofthefirstre-visittimeatpagei.Themoreimportantapageis,thesmallerthere-visittimeis,andthelargerthevisitfrequencyis.Mainconclusion2
isthestationarydistributionofThestationarydistributionofdiscretemodeliseasytocomputePowermethodforLogdataforFurtherquestionsHowaboutinhomogenousprocess?Statisticresultshow:differentperiodoftimepossessesdifferentvisitingfrequency.Poissonprocesseswithdifferentintensity.MarkedpointprocessHyperlinkisnotreliable.Users’realbehaviorshouldbeconsidered.RelevanceRankingManyfeaturesformeasuringrelevanceTermdistribution(anchor,URL,title,body,proximity,….)Recommendation&citation(PageRank,click-throughdata,…)StatisticsorknowledgeextractedfromwebdataQuestionsWhatistheoptimalrankingfunctiontocombinedifferentfeatures(orevidences)?Howtomeasurerelevance?LearningtoRankWhatistheoptimalweightingsforcombiningthevariousfeaturesUsemachinelearningmethodstolearntherankingfunctionHumanrelevancesystem(HRS)Relevanceverificationtests(RVT)Wei-YingMa,MicrosoftResearchAsiaLearningtoRankModelLearningSystemRankingSystemminLoss66Wei-YingMa,MicrosoftResearchAsiaLearningtoRank(Cont)
State-of-the-artalgorithmsforlearningtoranktakethepairwiseapproachRankingSVMRankBoostRankNet(employedatLiveSearch)67BreakdownWei-YingMa,MicrosoftResearchAsialearningtorankThegoaloflearningtorankistoconstructareal-valuedfunctionthatcangeneratearankingonthedocumentsassociatedwiththegivenquery.Thestate-of-the-artmethodstransformsthelearningproblemintothatofclassificationandthenperformsthelearningtask:Foreachquery,itisassumedthattherearetwocategoriesofdocuments:positiveandnegative(representingrelevantandirreverentwithrespecttothequery).Thendocumentpairsareconstructedbetweenpositivedocumentsandnegativedocuments.Inthetrainingprocess,thequeryinformationisactuallyignored.[5]Y.Cao,J.Xu,T.-Y.Liu,H.Li,Y.Huang,andH.-W.Hon.Adaptingrankingsvmtodocumentretrieval.InProc.ofSIGIR’06,pages186–193,2006.[11]T.Qin,T.-Y.Liu,M.-F.Tsai,X.-D.Zhang,andH.Li.Learningtosearchwebpageswithquery-levellossfunctions.TechnicalReportMSR-TR-2006-156,2006.Ascasestudies,weinvestigateRankingSVMandRankBoost.Weshowthatafterintroducing
query-levelnormalization
toitsobjectivefunction,RankingSVMwillhavequery-levelstability.ForRankBoost,thequery-levelstabilitycanbeachievedifweintroduceboth
query-levelnormalizationandregularization
toitsobjectivefunction.Were-representthelearningtorankproblembyintroducingtheconceptof‘query’and‘distributiongivenquery’intoitsmathematicalformulation.Moreprecisely,weassumethatqueriesaredrawnindependentlyfromaqueryspaceQaccordingtoan(unknown)probabilitydistributionItshouldbenotedthatif,thentheboundmakessense.Thisconditioncanbesatisfiedinmanypracticalcases.Ascasestudies,weinvestigateRankingSVMandRankBoost.Weshowthatafterintroducingquery-levelnormalizationtoitsobjectivefunction,RankingSVMwillhavequery-levelstability.ForRankBoost,thequery-levelstabilitycanbeachievedifweintroducebothquery-levelnormalizationandregularizationtoitsobjectivefunction.Theseanalysesagreelargelywithourexperimentsandtheexperimentsin[5]and[11].RankaggregationRankaggregationistocombinerankingresultsofentitiesfrommultiplerankingfunctionsinordertogenerateabetterone.Theindividualrankingfunctionsarereferredtoasbaserankers,orsimplyrankers.Score-basedaggregationRankaggregationcanbeclassifiedintotwocategories[2].Inthefirstcategory,theentitiesinindividualrankinglistsareassignedscoresandtherankaggregationfunctionisassumedtousethescores(denotedasscore-basedaggregation)[11][18][28].order-basedaggregation
Inthesecondcategory,onlytheordersoftheentitiesinindividualrankinglistsa
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 厂房工程质量保修与赔偿合同(04版)
- 常州2024年度二手医疗器械交易合同使用说明
- 二零二四年电商行业竞争调查合同3篇
- 二零二四年度技术开发合同全新范本
- 国土变更合同
- 二零二四年度国际物流仓储服务合同
- 采购设备合同评估单
- 猕猴桃树苗购买合同
- 专业医院护工服务合同
- 航空工程项目管理实施方案
- 小学一年级数学20以内的口算题(可直接打印A4)
- 立春气候与健康
- 八年级上册物理全册知识点总结(人教)
- 数据产权:生成式人工智能训练行为版权争议的规制路径
- 北师大版七年级数学上册课时课件合集共45套
- 新公务员法培训讲稿
- 白酒的品牌竞争与市场营销考核试卷
- 江苏省南通市海门区东洲小学等校2024-2025学年四年级上学期11月期中数学试题
- 服装行业生产质量控制手册
- 2024年时事政治试题【带答案】
- 2024年秋季新人教PEP版3年级上册英语教学课件unit4 A 第1课时
评论
0/150
提交评论