山西省朔州市刘家口中学2023年高二数学理测试题含解析_第1页
山西省朔州市刘家口中学2023年高二数学理测试题含解析_第2页
山西省朔州市刘家口中学2023年高二数学理测试题含解析_第3页
山西省朔州市刘家口中学2023年高二数学理测试题含解析_第4页
免费预览已结束,剩余1页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

山西省朔州市刘家口中学2023年高二数学理测试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.对两个变量y和x进行回归分析,得到一组样本数据:(x1,y1),(x2,y2),…,(xn,yn),则下列说法中不正确的是()

A.由样本数据得到的回归方程=x+必过样本点的中心(,)

B.残差平方和越小的模型,拟合的效果越好

C.用相关指数R2来刻画回归效果,R2的值越小,说明模型的拟合效果越好

D.在残差图中,残差点比较均匀地落在水平带状区域中,说明选用的模型比较合适,带状区域越窄,说明回归方程的预报精确度越高;参考答案:C2.曲线在点P(1,12)处的切线与y轴交点的纵坐标是

(

)

A.-9

B.-3

C.9

D.15参考答案:C3.设是变量和的个样本点,直线是由这些样本点通过最小二乘法得到的线性回归直线,以下结论中正确的是( )A.和的相关系数为直线的斜率 B.和的相关系数在0到1之间C.当为偶数时,分布在两侧的样本点的个数一定相同 D.直线过点(,)参考答案:D4.若点P(1,1)为圆的弦MN的中点,则弦MN所在直线方程为()A.2x+y-3=0

B.x-2y+1=0

C.x+2y-3=0

D.2x-y-1=0参考答案:D5.已知等比数列中,各项都是正数,且成等差数列,则(

)A.

B. C. D.参考答案:D6.设x∈R,则“x>”是“”的()A.充分不必要条件

B.必要不充分条件

C.充要条件

D.既不充分也不必要条件参考答案:A7.设全集,则A∩B=(

)A. B. C. D.参考答案:C【分析】分别求出集合、,利用交集的定义求出【详解】,由于,所以,故答案选C。【点睛】本题考查一元二次不等式与对数不等式的解以及集合交集的运算,属于基础题。8.函数y=x2(x﹣3)的单调递减区间是()A.(﹣∞,0) B.(2,+∞) C.(0,2) D.(﹣2,2)参考答案:C【考点】利用导数研究函数的单调性.【分析】根据导函数与函数单调性的关系,可得y'<0,建立不等量关系,求出单调递减区间即可.【解答】解:∵y=y=x2(x﹣3)=x3﹣3x2,∴y′=3x2﹣6x,∴3x2﹣6x<0即x(x﹣2)<0∴0<x<2,故函数的单调递减区间是(0,2).故选:C【点评】本小题主要考查运用导数研究函数的单调性等基础知识,考查分析和解决问题的能力.9.已知等差数列{an}中,(

)A.100

B.210

C.380

D.400参考答案:B10.一个几何体的三视图及其尺寸如下(单位cm),则该几何体表面积及体积为(

A.,

B.,C.,

D.以上都不正确

参考答案:A二、填空题:本大题共7小题,每小题4分,共28分11.已知等比数列{an}中,a1=2,S3=6,求a3=___参考答案:a3=2或a3=8.12.某单位招聘员工,有200名应聘者参加笔试,随机抽查了其中20名应聘者笔试试卷,统计他们的成绩如下表:分数段人数1366211若按笔试成绩择优录取40名参加面试,由此可预测参加面试的分数线为

分.参考答案:80略13.若,则

___________.参考答案:略14.设函数,则=

.参考答案:15.若函数在是增函数,则实数的取值范围是_____________.参考答案:略16.在三棱锥P—ABC中,,,,则两直线PC与AB所成角的大小是______.参考答案:略17.过抛物线的焦点F作倾斜角为的直线交抛物线于A、B两点,若线段AB的长为8,则________________

参考答案:2三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.已知函数.(1)讨论f(x)的单调性;(2)若恒成立,求实数a的取值范围.参考答案:(1)当时,在上单调递增;当时,在上单调递减,在上单调递增;当时,在上单调递减,在上单调递增;(2).【分析】(1)对a分三种情况讨论求出函数的单调性;(2)对a分三种情况,先求出每一种情况下函数f(x)的最小值,再解不等式得解.【详解】(1),当时,,在上单调递增;当时,,,,,∴在上单调递减,在上单调递增;当时,,,,,∴在上单调递减,在上单调递增.综上:当时,在上单调递增;当时,上单调递减,在上单调递增;当时,在上单调递减,在上单调递增.(2)由(1)可知:当时,,∴成立.当时,,,∴.当时,,,∴,即.综上.【点睛】本题主要考查利用导数研究函数的单调性和不等式的恒成立问题,意在考查学生对这些知识的理解掌握水平和分析推理能力.19.名同学排队照相.(1)若排成一排照,甲、乙、丙三人必须相邻,有多少种不同的排法?(用数字作答)(2)若排成一排照,人中有名男生,名女生,女生不能相邻,有多少种不面的排法?(用数字作答)参考答案:(1)第一步,将甲、乙、丙视为一个元素,有其余个元素排成一排,即看成个元素的全排列问题,有种排法;第二步,甲、乙、丙三人内部全排列,有种排法.由分步计数原理得,共有种排法.(2)第一步,名男生全排列,有种排法;第二步,女生插空,即将名女生插入名男生之间的个空位,这样可保证女生不相邻,易知有种插入方法.由分步计数原理得,符合条件的排法共有:种.略20.如图,在平面直角坐标系中,,,,,设的外接圆圆心为E.(1)若⊙E与直线CD相切,求实数a的值;

(2)设点在圆上,使的面积等于12的点有且只有三个,试问这样的⊙E是否存在,若存在,求出⊙E的标准方程;若不存在,说明理由.参考答案:略21.已知椭圆的离心率为,求椭圆的短轴长.参考答案:解(1)由此时:

(2)由(3)由此时:

(4)由此时:

综上:22.某校从高一年级学生中随机抽取40名学生作为样本,将他们的期中考试数学成绩(满分100分,成绩均为不低于40分的整数)分成六段:[40,50),[50,60),[90,100)后得到如图的频率分布直方图.(Ⅰ)求图中实数a的值;(Ⅱ)根据频率分布直方图,试估计该校高一年级学生其中考试数学成绩的平均数;(Ⅲ)若从样本中数学成绩在[40,50)与[90,100]两个分数段内的学生中随机选取2名学生,试用列举法求这两名学生的数学成绩之差的绝对值不大于10的概率.参考答案:【考点】离散型随机变量的期望与方差;频率分布直方图;离散型随机变量及其分布列.【分析】(Ⅰ)由频率分布直方图中频率之和为1,能求出a.(Ⅱ)平均分是频率分布直方图各个小矩形的面积×底边中点横坐标之和,由此利用频率分布直方图能求出平均分.(Ⅲ)由频率分布直方图,得数学成绩在[40,50)内的学生人数为40×0.05=2,这两人分别记为A,B,数学成绩在[90,100)内的学生人数为40×0.1=4,这4人分别记为C,D,E,F,如果这两名学生的数学成绩都在[40,50)或都在[90,100)内,则这两名学生的数学成绩之差的绝对值不大于10,由此利用列举法能过河卒子同这两名学生的数学成绩之差的绝对值不大于10的概率.【解答】解:(Ⅰ)由频率分布直方图,得:10×(0.005+0.01+0.025+a+0.01)=1,解得a=0.03.(Ⅱ)由频率分布直方图得到平均分:=0.05×45+0.1×55+0.2×65+0.3×75+0.25×85+0.1×95=74(分).(Ⅲ)由频率分布直方图,得数学成绩在[40,50)内的学生人数为40×0.05=2,这两人分别记为A,B,数学成绩在[90,100)内的学生人数为40×0.1=4,这4人分别记为C,D,E,F,若从数学成绩在[40,50)与[90,100)两个分数段内的学生中随机选取2名学生,则所有的基本事件有:(A,B),(A,C),(A,D),(A,E),(A,F),(B,C),(B,D),(B,E),(B,F),(C,D),(C,E),(C,F),(D,E),(D,F),(E,F),共15个,如果这两名学生的数学成绩都在[40,50)或都在[90,100)内,则这两名学生的数学成绩

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论