下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
山西省忻州市管家营学校2022-2023学年高三数学文期末试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.函数f(x)=x|x|.若存在x∈[1,+∞),使得f(x﹣2k)﹣k<0,则k的取值范围是()A.(2,+∞) B.(1,+∞) C.(,+∞) D.(,+∞)参考答案:D【考点】特称命题.【分析】根据题意x∈[1,+∞)时,x﹣2k∈[1﹣2k,+∞);讨论①1﹣2k≤0时和②1﹣2k>0时,存在x∈[1,+∞),使f(x﹣2k)﹣k<0时k的取值范围即可.【解答】解:根据题意,x∈[1,+∞)时,x﹣2k∈[1﹣2k,+∞);①当1﹣2k≤0时,解得k≥;存在x∈[1,+∞),使得f(x﹣2k)﹣k<0,即只要f(1﹣2k)﹣k<0即可;∵1﹣2k≤0,∴f(1﹣2k)=﹣(1﹣2k)2,∴﹣(1﹣2k)2﹣k<0,整理得﹣1+4k﹣4k2﹣k<0,即4k2﹣3k+1>0;∵△=(﹣3)2﹣16=﹣7<0,∴不等式对一切实数都成立,∴k≥;②当1﹣2k>0时,解得k<;存在x∈[1,+∞),使得f(x﹣2k)﹣k<0,即只要f(1﹣2k)﹣k<0即可;∵1﹣2k>0,∴f(1﹣2k)=(1﹣2k)2,∴(1﹣2k)2﹣k<0,整理得4k2﹣5k+1<0,解得<k<1;又∵k<,∴<k<;综上,k∈(,)∪[,+∞)=(+∞);∴k的取值范围是k∈(,+∞).故选:D.2.已知集合,,则(
)(A)
(B)(C)
(D)参考答案:C因为,,所以,选C.3.已知,,且为与的等比中项,则的最大值为
(
)A. B.
C. D.参考答案:B4.变量x,y满足约束条件,则目标函数的取值范围是(A)
(B)
(C)
(D)参考答案:A5.据报道,德国“伦琴”(ROSAT)卫星将在2011年10月23日某时落在地球的某个地方,砸中地球人的概率约为,为了研究中学生对这件事情的看法,某中学对此事进行了问卷调查,共收到2000份有效问卷,得到如下结果。对卫星撞地球的态度关注但不担心关注有点担心关注且非常关心不关注人数(人)1000500
300则从收到的2000份有效问卷中,采用分层抽样的方法抽取20份,抽到的关注且非常担心的问卷份数为A.2
B.3
C.5
D.10参考答案:A6.已知三棱锥的三视图如图所示,则它的外接球的表面积为()A.4π B.8π C.12π D.16π参考答案:A【考点】球的体积和表面积;由三视图求面积、体积.【分析】由已知中三棱锥的三视图,我们可以求出三棱棱的高,即顶点到底面的距离,及底面外接圆的半径,进而求出三棱锥外接球的半径,代入球的表面积公式,即可求出外接球的表面积.【解答】解:由已知中三棱锥的高为1底面为一个直角三角形,由于底面斜边上的中线长为1,则底面的外接圆半径为1,顶点在底面上的投影落在底面外接圆的圆心上,由于顶点到底面的距离,与底面外接圆的半径相等,所以底面直角三角形斜边中点就是外接球的球心;则三棱锥的外接球半径R为1,则三棱锥的外接球表面积S=4πR2=4π故选:A【点评】本题考查的知识点是由三视图求表面积,其中根据三视图出判断出三棱锥的几何特征,进而求出其外接球的半径是解答本题的关键.7.已知二次函数的导数,且的值域为,则的最小值为
(
)
A.3
B.
C.2
D.参考答案:C略8.P?Q为三角形ABC中不同的两点,若,,则为(
)A.
B.
C.
D.参考答案:B令为的中点,化为,即,可得,且点在边上,则,设点分别是的中点,则由可得,设点是的中点,则,设点是的中点,则,因此可得,所以,故选B.
9.已知全集U=R,集合,集合,那么(A)
(B)(C)
(D)参考答案:B略10.一个几何体的三视图如图,则其表面积为()A.20 B.18 C.14+2 D.14+2参考答案:A【考点】由三视图求面积、体积.【专题】计算题;作图题;空间位置关系与距离.【分析】由三视图得其直观图,从而求各个面的面积之和即可.【解答】解:由三视图得其直观图如下,由正方体截去四个角得到,故其表面积S=2×2+×2×2+4××2×2+4×××=20;故选A.【点评】本题考查了学生的空间想象力与作图计算的能力,属于基础题.二、填空题:本大题共7小题,每小题4分,共28分11.已知向量=(1,2),=(﹣3,2),则(+)?=.参考答案:14考点:平面向量数量积的运算;平面向量的坐标运算.专题:平面向量及应用.分析:由向量的坐标运算可得+=(﹣2,4),由数量积的坐标运算可得.解答:解:∵=(1,2),=(﹣3,2),∴+=(1,2)+(﹣3,2)=(﹣2,4),∴(+)?=﹣2×(﹣3)+4×2=14故答案为:14点评:本题考查平面向量的数量积的坐标运算,属基础题.12.将一颗质地均匀的骰子(一种各个面上分别标有1,2,3,4,5,6个点的正方体玩具)先后抛掷2次,则出现向上的点数之和不小于10的概率为
.参考答案:13.某大型超市销售的乳类商品有四种:纯奶.酸奶.婴幼儿奶粉.成人奶粉,且纯奶.酸奶.婴幼儿奶粉.成人奶粉分别有种.种.种.种不同的品牌.现采用分层抽样的方法从中抽取一个容量为的样本进行三聚氰胺安全检测,若抽取的婴幼儿奶粉的品牌数是,则
.参考答案:2014.极坐标方程为的直线与轴的交点为,与椭圆(为参数)交与,求.
参考答案:略15.设,则有(
)A. B.C. D.参考答案:A【分析】比较三个数与中间量0,1的大小即可求得大小关系.【详解】因为,所以故选:A【点睛】本题考查利用指数函数、对数函数的单调性比较指数式、对数式的大小,属于基础题.16.已知,则
.
参考答案:略17.过双曲线的一个焦点F作它的一条渐近线的垂线FM,垂足为M并且交轴于E,若M为EF中点,则=___________.
参考答案:答案:1三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.设函数f(x)=|2x﹣7|+1.(1)求不等式f(x)≤x的解集;(2)若存在x使不等式f(x)﹣2|x﹣1|≤a成立,求实数a的取值范围.参考答案:【考点】绝对值不等式的解法.【分析】(1)问题转化为解不等式组问题,解出取并集即可;(2)先求出g(x)的分段函数,求出g(x)的最小值,从而求出a的范围.【解答】解:(1)由f(x)≤x得|2x﹣7|+1≤x,∴,∴不等式f(x)≤x的解集为;(2)令g(x)=f(x)﹣2|x﹣1|=|2x﹣7|﹣2|x﹣1|+1,则,∴g(x)min=﹣4,∵存在x使不等式f(x)﹣2|x﹣1|≤a成立,∴g(x)min≤a,∴a≥﹣4.19.已知函数,曲线在点M处的切线恰好与直线垂直。
(1)求实数的值;
(2)若函数的取值范围。参考答案:解:(1)
①式…………1分
…………3分由条件
②式…………5分由①②式解得…………6分(2),令
…………8分经检验知函数,的取值范围。…………13分
20.已知等差数列,,
(1)求数列的通项公式
(2)设,求数列的前项和参考答案:21.已知等差数列{an}中,,,,成等比数列.(1)求数列{an}的通项公式;(2)求数列{an}的前n项和为Sn.参考答案:(1)或(2)或5n.【分析】(1)设等差数列的公差为,由题得,解方程得到d的值,即得数列的通项公式;(2)利用等差数列的前n项和公式求.【详解】(1)设等差数列的公差为,则,,因为,,成等比数列,所以,化简的,则或当时,.当时,,(2)由(1)知当时,.当时,则.【点睛】本题主要考查等差
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《肾移植术后的护理》课件
- 养老院老人生活设施维修人员激励制度
- 养老院老人关爱服务规范制度
- 《用餐的经验过程》课件
- 2024年泥工装修项目合作合同样本版B版
- 施工成本控制的合同(2篇)
- 健美操基本步伐课件
- 2024年甲乙双方关于城市轨道交通信号系统建设与维护合同
- 刑法学课程课件教案绪论
- 2025年廊坊货运从业资格模拟考
- 2024年人教版七年级英语(上册)期末考卷及答案(各版本)
- 2024年执法资格考试考前预测卷(附答案)
- 部编版道德与法治二年级上册全册教案
- 农村民兵连指导员述职报告范本
- 二年级数学上册100道口算题大全 (每日一套共26套)
- 2024年农业学:农村农业基础知识考试题库(附含答案)
- 六盘水事业单位笔试真题及答案2024
- 中国体育奥林匹克运动会发展历史讲解课件模板
- 大国兵器智慧树知到期末考试答案章节答案2024年中北大学
- 2024年国家开放大学电大《政治学原理》期末考试题题库
- JBT 8906-2014 悬臂起重机标准规范
评论
0/150
提交评论