山西省忻州市宏道中学2021-2022学年高二数学文上学期期末试卷含解析_第1页
山西省忻州市宏道中学2021-2022学年高二数学文上学期期末试卷含解析_第2页
山西省忻州市宏道中学2021-2022学年高二数学文上学期期末试卷含解析_第3页
山西省忻州市宏道中学2021-2022学年高二数学文上学期期末试卷含解析_第4页
山西省忻州市宏道中学2021-2022学年高二数学文上学期期末试卷含解析_第5页
已阅读5页,还剩2页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

山西省忻州市宏道中学2021-2022学年高二数学文上学期期末试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.过抛物线的焦点F作直线交抛物线于,两点,如果,那么(

)A.10 B.9 C.6 D.4参考答案:B【分析】依据抛物线的定义,可以求出点A,B到准线距离,即可求得的长。【详解】抛物线的准线方程是,所以,,,故选B。【点睛】本题主要考查抛物线定义的应用以及过焦点弦的弦长求法。2.已知x与y之间的一组数据:x0123y1357则y与x的线性回归方程为y=bx+a必过(

)A.(2,2)点

B.(1.5,0)点

C.(1,2)点

D.(1.5,4)点参考答案:D3.若z∈C,且|z+2-2i|=1,则|z-2-2i|的最小值与最大值分别是(

)A.2,3

B.3,5

C.4,6

D.4,5参考答案:B略4.在等比数列中,若,,则公比为A.

B.

C.

D.,

参考答案:D5.(理科)从4名男生和3名女生中选出3人参加某个座谈会,若这3中必须既有男生又有女生,则不同的选法共有(

)种.

A.60

B.35

C.34

D.30参考答案:D6.已知正数x、y满足,则的最小值是

A.18

B.16

C.8

D.10参考答案:A7.如图,一个简单空间几何体的三视图其主视图与左视图都是边长为2的正三角形、俯视图轮廓为正方形,则其体积是(

).

A. B. C. D.参考答案:B该空间几何体为正四棱锥,其底面边长为,高为,所以体积.故选.8.若(其中是虚数单位)是纯虚数,则实数的值为

(

)

A.

B.或

C.

D.或参考答案:C略9.已知抛物线:的焦点为,直线与交于,两点,则(

)A.B.

C.

D.

参考答案:D略10.将函数f(x)=sin(2x+φ)的图象向左平移个单位,所得到的函数图象关于y轴对称,则φ的一个可能取值为()A. B. C.0 D.参考答案:B【考点】函数y=Asin(ωx+φ)的图象变换.【专题】三角函数的图像与性质.【分析】由条件利用y=Asin(ωx+φ)的图象变换规律,余弦函数的图象的对称性,求得φ的一个可能取值.【解答】解:将函数f(x)=sin(2x+φ)的图象向左平移个单位,可得到的函数y=sin[2(x+)+φ)]=sin(2x++φ)的图象,再根据所得图象关于y轴对称,可得+φ=kπ+,即φ=kπ+,k∈z,则φ的一个可能取值为,故选:B.【点评】本题主要考查y=Asin(ωx+φ)的图象变换规律,正弦函数、余弦函数的图象的对称性,属于基础题.二、填空题:本大题共7小题,每小题4分,共28分11.高二某班共有48人,学号依次为1,2,3,…,48,现用系统抽样的方法抽取一个容量为4的样本,已知学号5,29,41在样本中,那么还有一个同学的学号应为__________.参考答案:17略12.已知空间直角坐标系中,A(1,3,-5),B(4,-2,3),则_________.参考答案:13.在正三棱柱ABC﹣A1B1C1,若AB=2,AA1=1,则A到平面A1BC的距离.参考答案:【考点】点、线、面间的距离计算.【分析】要求点A到平面A1BC的距离,可以求三棱锥底面A1BC上的高,由三棱锥的体积相等,容易求得高,即是点到平面的距离.【解答】解:设点A到平面A1BC的距离为h,则三棱锥的体积为即

∴∴h=.故答案为:.14.已知某圆锥的侧面展开图是半径为2的半圆,则该圆锥的体积为

.参考答案:由题意知:圆锥的母线长;圆锥的侧面展开图的弧长等于底面圆的周长,设底面圆的半径为,则,;圆锥的高;所以圆锥的体积.

15.P为椭圆上一点,F1、F2是椭圆的左、右焦点,若使△F1PF2为直角三角形的点P共有8个,则椭圆离心率的取值范围是

参考答案:16.已知,,,,则__________(其中).参考答案:试题分析:第一个式子左边1个数的平方,右边从1开始,连续的2个整数相乘,再乘;第二个式子左边2个数的平方,右边从2开始,连续的2个整数相乘,再乘;第个式子左边个数的平方和,右边从开始,连续的2个数相乘,在乘,即为.考点:归纳推理的应用.17.函数的值域为____________.参考答案:【分析】对的范围分类,即可求得:当时,函数值域为:,当时,函数值域为:,再求它们的并集即可。【详解】当时,,其值域为:当时,,其值域为:所以函数的值域为:【点睛】本题主要考查了分段函数的值域及分类思想,还考查了指数函数及对数函数的性质,考查计算能力及转化能力,属于中档题。三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.(本小题满分12分)已知椭圆的方程为:,其中,直线与椭圆的交点在轴上的射影恰为椭圆的焦点.(1)求椭圆的方程;(2)设直线与椭圆在轴上方的一个交点为,是椭圆的右焦点,试探究以为直径的圆与以椭圆长轴为直径的圆的位置关系.参考答案:(1)设椭圆的左右焦点分别为、,直线与椭圆的一个交点坐标是,

根据椭圆的定义得:,即,即,

又,,联立三式解得

所以椭圆的方程为:

(2)由(1)可知,直线与椭圆的一个交点为,则以为直径的圆方程是,圆心为,半径为

以椭圆长轴为直径的圆的方程是,圆心是,半径是

两圆心距为,所以两圆内切.

19.已知函数f(x)=x+alnx在x=1处的切线与直线x+2y=0垂直,函数g(x)=f(x)+x2﹣bx.(1)求实数a的值;(2)若函数g(x)存在单调递减区间,求实数b的取值范围;(3)设x1,x2(x1<x2)是函数g(x)的两个极值点,若b≥,求g(x1)﹣g(x2)的最小值.参考答案:【考点】利用导数研究曲线上某点切线方程;利用导数研究函数的极值.【分析】(1)求导数,利用导数的几何意义能求出实数a的值.(2)由题意知g′(x)<0在(0,+∞)上有解,即x++1﹣b<0有解,由此能求出实数b的取值范围.(3)g(x1)﹣g(x2)=ln﹣(﹣),由此利用构造成法和导数性质能求出g(x1)﹣g(x2)的最小值.【解答】解:(1)∵f(x)=x+alnx,∴f′(x)=1+,∵f(x)在x=1处的切线l与直线x+2y=0垂直,∴k=f′(x)|x=1=1+a=2,解得a=1.(2)∵g(x)=lnx+﹣(b﹣1)x,∴g′(x)=,x>0,由题意知g′(x)<0在(0,+∞)上有解,即x++1﹣b<0有解,∵定义域x>0,∴x+≥2,x+<b﹣1有解,只需要x+的最小值小于b﹣1,∴2<b﹣1,解得实数b的取值范围是{b|b>3}.(3)∵g(x)=lnx+﹣(b﹣1)x,∴g′(x)==0,∴x1+x2=b﹣1,x1x2=1∴g(x1)﹣g(x2)=ln﹣(﹣)∵0<x1<x2,∴设t=,0<t<1,令h(t)=lnt﹣(t﹣),0<t<1,则h′(t)=﹣<0,∴h(t)在(0,1)上单调递减,又∵b≥,∴(b﹣1)2≥,∵0<t<1,∴4t2﹣17t+4≥0,∴0<t≤,h(t)≥h()=﹣2ln2,故所求的最小值为﹣2ln2.【点评】本题考查实数值的求法,考查函数的最大值的求法,解题时要认真审题,注意导数性质的合理运用.20.在平面直角坐标系中,如图,已知椭圆的左、右顶点为、,右焦点为,设过点的直线、与此椭圆分别交于点、,其中,,⑴设动点满足,求点的轨迹方程;⑵设,,求点的坐标;⑶若点在点的轨迹上运动,问直线是否经过轴上的一定点,若是,求出定点的坐标;若不是,说明理由.参考答案:解:⑴设,依题意知代入化简得故的轨迹方程为⑵由及得,则点,从而直线的方程为;同理可以求得直线的方程为联立两方程可解得所以点的坐标为⑶假设直线过定点,由在点的轨迹上,直线的方程为,直线的方程为点满足得又,解得,从而得点满足,解得若,则由及解得,此时直线的方程为,过点若,则,直线的斜率,直线的斜率,得,所以直线过点,因此,直线必过轴上的点

略21.等比数列{an}的各项均为正数,且2a1+3a2=1,.(1)求数列{an}的通项公式.(2)设,求数列{bn}的前n项和Sn.参考答案:【考点】数列的求和;等比数列的性质.【专题】等差数列与等比数列.【分析】(1)利用条件2a1+3a2=1,.求出首项和公差,然后求出通项公式.(2)求出数列{bn}的通项公式,然后利用错位相减法求数列{bn}的前n项和Sn.【解答】解:(1)设数列{an}的公比为q,由得,所以,由条件可知q>0,故.由2a1+3a2=1得.故数列{an}的通项式为an=.(2)=n?3n,,,两式相减得,所以.【点评】本题主要考查等等比数列的通项公式以及利用错位相减法求数列的和,要求熟练掌握错位相减法.22.设函数f(x)=(x+a)lnx,g(x)=.已知曲线y=f(x)在点(1,f(1))处的切线与直线2x﹣y=0平行.(Ⅰ)求a的值;(Ⅱ)是否存在自然数k,使得方程f(x)=g(x)在(k,k+1)内存在唯一的根?如果存在,求出k;如果不存在,请说明理由;(Ⅲ)设函数m(x)=min{f(x),g(x)}(min{p,q}表示p,q中的较小值),求m(x)的最大值.参考答案:【考点】利用导数研究曲线上某点切线方程;导数在最大值、最小值问题中的应用.【分析】(Ⅰ)求出f(x)的导数,求得切线的斜率,由两直线平行的条件:斜率相等,解方程可得a=1;(Ⅱ)求出f(x)、g(x)的导数和单调区间,最值,由零点存在定理,即可判断存在k=1;(Ⅲ)由(Ⅱ)求得m(x)的解析式,通过g(x)的最大值,即可得到所求.【解答】解:(Ⅰ)函数f(x)=(x+a)lnx的导数为f′(x)=lnx+1+,曲线y=f(x)在点(1,f(1))处的切线斜率为f′(1)=1+a,由切线与直线2x﹣y=0平行,则a+1=2,解得a=1;(Ⅱ)由(Ⅰ)可得f(x)=(x+1)lnx,f′(x)=lnx+1+,令h(x)=lnx+1+,h′(x)=﹣=,当x∈(0,1),h′(x)<0,h(x)在(0,1)递减,当x>1时,h′(x)>0,h(x)在(1,+∞)递增.当x=1时,h(x)min=h(1)=2>0,即f′(x)>0,f(x)在(0,+∞)递增,即有f(x)在(k,k+1)递增,g(x)=的导数为g′(x)=,当x∈(0,2),g′(x)>0,g(x)在(0,2)递增,当x>2时,g′(x)<0,g(x)在(2,+∞)递减.则x=2取得最大值,令T(x)=f(x)﹣g(x)=(x+1)lnx﹣

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论