下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
山西省忻州市五花城学校初中部2022年高一数学文月考试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.设,,若,,,则(
)A.
B. C. D.参考答案:C略2.已知,则()A. B. C. D.参考答案:A【分析】分子分母同时除以,可将所求式子化为关于的式子,代入求得结果.【详解】本题正确选项:【点睛】本题考查求解正弦、余弦的齐次式的值的问题,关键是能够通过除法运算构造出关于正切值的式子,属于常考题型.3.体积为8的正方体的顶点都在同一球面上,则该球面的表面积为A.12π B. C.8π D.4π参考答案:A试题分析:因为正方体的体积为8,所以棱长为2,所以正方体的体对角线长为,所以正方体的外接球的半径为,所以该球的表面积为,故选A.【考点】正方体的性质,球的表面积【名师点睛】与棱长为的正方体相关的球有三个:外接球、内切球和与各条棱都相切的球,其半径分别为、和.4.已知在定义域R上是减函数,则函数y=f(|x+2|)的单调递增区间是(
)A.(-∞,+∞)
B.(2,+∞)
C.(-2,+∞)
D(―∞,―2)参考答案:D5.函数的图象是下列图象中的
(
)
参考答案:A6.某几何体的三视图如图所示,则该几何体的体积为()A. B. C. D.参考答案:B【分析】该几何体由上下两部分组成的,上面是一个圆锥,下面是一个正方体,由体积公式直接求解.【详解】该几何体由上下两部分组成的,上面是一个圆锥,下面是一个正方体.∴该几何体的体积V64.故选:B.【点睛】本题考查了正方体与圆锥的组合体的三视图还原问题及体积计算公式,考查了推理能力与计算能力,属于基础题.7.一个年级有12个班,每个班有50名学生,随机编号为1~50,为了了解他们课外的兴趣,要求每班第40号学生留下来进行问卷调查,这运用的抽样方法是()A.分层抽样 B.抽签法 C.随机数表法 D.系统抽样法参考答案:D【考点】收集数据的方法.【分析】当总体容量N较大时,采用系统抽样,将总体分成均衡的若干部分指的是将总体分段,分段的间隔要求相等,预先制定的规则指的是:在第1段内采用简单随机抽样确定一个起始编号,在此编号的基础上加上分段间隔的整倍数即为抽样编号.【解答】解:当总体容量N较大时,采用系统抽样,将总体分成均衡的若干部分指的是将总体分段,在第1段内采用简单随机抽样确定一个起始编号,在此编号的基础上加上分段间隔的整倍数即为抽样编号.故选D.8.已知{an}是等差数列,,其前10项和,则其公差d=A. B. C. D.参考答案:D,解得,则,故选D。9.下列说法正确的是(
)A.幂函数的图像恒过点 B.指数函数的图像恒过点C.对数函数的图像恒在轴右侧 D.幂函数的图像恒在轴上方参考答案:C10.
设函数为奇函数,则f(5)=(
)A.0
B.1
C.
D.5参考答案:C二、填空题:本大题共7小题,每小题4分,共28分11.已知,要使函数在区间[0,4]上的最大值是9,则m的取值范围是
.参考答案:不等式即:,等价于:结合函数的定义域可得:,据此可得:,即的取值范围是.
12.我国南宋数学家秦九韶所著《数学九章》中有“米谷粒分”问题:粮仓开仓收粮,粮农送来米1512石,验得米内夹谷,抽样取米一把,数得216粒内夹谷27粒,则这批米内夹谷约
石.参考答案:189
13.已知圆C:(x﹣3)2+(y﹣4)2=1,点A(0,﹣1),B(0,1),设P是圆C上的动点,令d=|PA|2+|PB|2,则d的取值范围是
.参考答案:[32,72]【考点】直线与圆的位置关系.【分析】利用圆的参数方程,结合两点间的距离公式即可得到结论.【解答】解:设P点的坐标为(3+sinα,4+cosα),则d=|PA|2+|PB|2=(3+sinα)2+(5+cosα)2+(3+sinα)2+(3+cosα)2=52+12sinα+16cosα=52+20sin(θ+α)∴当sin(θ+α)=1时,即12sinα+16cosα=20时,d取最大值72,当sin(θ+α)=﹣1时,即12sinα+16cosα=﹣20,d取最小值32,∴d的取值范围是[32,72].故答案为[32,72].14.函数的单调递增区间为
.参考答案:[1,2)【考点】复合函数的单调性;对数函数的单调区间.【分析】由函数的解析式可以看出这是一个复合函数,外层函数是一个减函数,故应先求出函数的定义域,再研究内层函数在定义域上的单调性,求出内层函数的单调递减区间即得复合函数的单调递增区间.【解答】解:由题设令2x﹣x2>0,解得0<x<2令t=2x﹣x2,其图象开口向下,对称轴为x=1,故t=2x﹣x2在(0,1)上是增函数,在[1,2)上是减函数
由于外层函数是减函数,由复合函数的单调性判断规则知
函数的单调递增区间为[1,2)故应填[1,2).15.(5分)某工厂生产甲、乙、丙三种型号的产品,产品数量之比为3:5:7,现用分层抽样的方法抽出容量为n的样本,其中甲产品有18件,则样本容量n=
.参考答案:90考点: 分层抽样方法.专题: 概率与统计.分析: 根据分层抽样的定义建立比例关系即可得到结论.解答: 由题意得,解得n=90,故答案为:90点评: 本题主要考查分层抽样的应用,根据条件建立比例关系是解决本题的关键.比较基础.16.函数y=(x>1)的最小值是.参考答案:2+2【考点】基本不等式.【分析】求出y=(x﹣1)++2,根据基本不等式的性质求出y的最小值即可.【解答】解:∵x>1,∴y===(x﹣1)++2≥2+2=2+2,当且仅当x﹣1=即x=1+时“=”成立,故答案为:2+2.17.若幂函数y=(m2-2m-2)x-4m-2在x∈(0,+∞)上为减函数,则实数m的值是.
参考答案:m=3三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.如图(1)所示,已知四边形SBCD是由直角△SAB和直角梯形ABCD拼接而成的,其中∠SAB=∠SDC=90°,且点A为线段SD的中点,AD=2DC=1,AB=SD,现将△SAB沿AB进行翻折,使得二面角S﹣AB﹣C的大小为90°,得到的图形如图(2)所示,连接SC,点E、F分别在线段SB、SC上.(Ⅰ)证明:BD⊥AF;(Ⅱ)若三棱锥B﹣AEC的体积是四棱锥S﹣ABCD体积的,求点E到平面ABCD的距离.参考答案:【分析】(Ⅰ)推导出SA⊥AD,SA⊥AB,从而SA⊥平面ABCD,进而SA⊥BD,再求出AC⊥BD,由此得到BD⊥平面SAC,从而能证明BD⊥AF.(Ⅱ)设点E到平面ABCD的距离为h,由VB﹣AEC=VE﹣ABC,且=,能求出点E到平面ABCD的距离.【解答】证明:(Ⅰ)∵四边形SBCD是由直角△SAB和直角梯形ABCD拼接而成的,其中∠SAB=∠SDC=90°,二面角S﹣AB﹣C的大小为90°,∴SA⊥AD,又SA⊥AB,AB∩AD=A,∴SA⊥平面ABCD,又BD?平面ABCD,∴SA⊥BD,在直角梯形ABCD中,∠BAD=∠ADC=90°,AD=2CD=1,AB=2,∴tan∠ABD=tan∠CAD=,又∠DAC+∠BAC=90°,∴∠ABD+∠BAC=90°,即AC⊥BD,又AC∩SA=A,∴BD⊥平面SAC,∵AF?平面SAC,∴BD⊥AF.解:(Ⅱ)设点E到平面ABCD的距离为h,∵VB﹣AEC=VE﹣ABC,且=,∴===,解得h=,∴点E到平面ABCD的距离为.19.已知圆,点A(3,5),(1)求过点A的圆的切线方程;(2)O点是坐标原点,求三角形AOC的面积S。参考答案:(1)切线方程为或,(2)20.在△ABC中,角A,B,C所对的边分别为a,b,c,且.(1)求B;(2)若,,,求a.参考答案:解:(1)因为,所以,而,故,(2)由或(舍).
21.在中,三个内角所对的边分别为(),,
(1)求的值,
(2)若边长,求的面积参考答案:解:(1)
----2分
则
--4分
因为---7分
(2)
---10分
---14分22.(12分)已知=(5cosx,cosx),=(sinx,2cosx),函数f(x)=?+||2(1)求函数f(x)的最小正周期;(2)当≤x≤时,求函数f(x)的值域;(3)求满足不等式f(x)≥6的x的集合.参考答案:考点: 平面向量数量积的运算;三角函数中的恒等变换应用;正弦函数的图象.专题: 计算题;三角函数的求值;三角函数的图像与性质;平面向量及应用.分析: 运用平面向量的数量积的坐标表示和向量模的公式,及二倍角的正弦和余弦公式,以及两角和的正弦公式,化简f(x),再由周期公式和正弦函数的图象和性质,即可得到所求的值域和x的取值集合.解答: 由于f(x)=f(x)=?+||2=5sinxcosx+2cos2x+sin2x+4cos2x=5sinxcosx+sin2x+6cos2x=sin2x++3(1+cos2x)=sin
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 纤维制书写用具市场发展现状调查及供需格局分析预测报告
- 2024年度企业并购保密合同
- 运载工具专用座椅套市场环境与对策分析
- 2024年度旅游服务公司与景区合作合同
- 2024年度房地产项目园林景观设计合同
- 草本化妆品市场发展预测和趋势分析
- 2024年度品牌形象设计:朋友圈Logo定制服务合同
- 2024年度拆房工程环境保护与污染处理合同
- 2024年度旅游景区开发与运营管理合同
- 2024年度城市供水工程建设的施工合同
- 教学设计中的资源整合与利用
- 浙江省公路工程工程量清单计价规范(word版)
- 年产量万吨铝及铝合金板带材车间设计论述
- 2022信息安全技术服务器安全技术要求和测评准则
- 七年级期中考试总结班会课件
- 《柴油发电机组》课件
- 个人品牌建设年终培训教你打造独特的个人品牌形象
- 《导游基础知识》课件
- 中医康复技术专业设置论证报告
- 公司财务-第4章 净现值
- 养老保险知识普及
评论
0/150
提交评论