山西省大同市泛亚中学2022-2023学年高二数学文模拟试题含解析_第1页
山西省大同市泛亚中学2022-2023学年高二数学文模拟试题含解析_第2页
山西省大同市泛亚中学2022-2023学年高二数学文模拟试题含解析_第3页
山西省大同市泛亚中学2022-2023学年高二数学文模拟试题含解析_第4页
免费预览已结束,剩余1页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

山西省大同市泛亚中学2022-2023学年高二数学文模拟试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.已知函数f(x)=,则()A. B. C. D.参考答案:B【考点】定积分.【分析】先根据条件可化为(x+1)2dx+dx,再根据定积分以及定积分的几何意义,求出即可.【解答】解:(x+1)2dx+dx,∵(x+1)2dx=(x+1)3|=,dx表示以原点为圆心以1为为半径的圆的面积的四分之一,故dx=π,∴(x+1)2dx+dx==,故选:B2.已知是等差数列,,其前10项和,则公差(

A.

B.

C.

D.参考答案:D3.方程的两个根可分别作为()A.一椭圆和一双曲线的离心率 B.两抛物线的离心率C.一椭圆和一抛物线的离心率 D.两椭圆的离心率参考答案:A4.甲乙两队进行排球比赛,已知在一局比赛中甲队获胜的概率是,没有平局.若采用三局两胜制比赛,即先胜两局者获胜且比赛结束,则甲队获胜的概率等于()A. B. C. D.参考答案:A试题分析:“甲队获胜”包括两种情况,一是获胜,二是获胜.根据题意若是甲队获胜,则比赛只有局,其概率为;若是甲队获胜,则比赛局,其中第局甲队胜,前局甲队获胜任意一局,其概率为,所以甲队获胜的概率等于,故选A.考点:相互独立事件的概率及次独立重复试验.【方法点晴】本题主要考查了相互独立事件的概率及次独立重复试验,属于中档题.本题解答的关键是读懂比赛的规则,尤其是根据“采用三局两胜制比赛,即先胜两局者获胜且比赛结束”把整个比赛所有的可能情况分成两类,甲队以获胜或获胜,据此分析整个比赛过程中的每一局的比赛结果,根据相互独立事件的概率乘法公式及次独立重复试验概率公式求得每种情况的概率再由互斥事件的概率加法公式求得答案.5.等差数列中,已知,使得的最小正整数为(

)A.6

B.7

C.8

D.9参考答案:C6.过点P(3,1)作圆x2+y2﹣2x=0的两条切线,切点分别为A,B,则直线AB的方程为()A.2x﹣y﹣3=0 B.2x+y﹣3=0 C.x﹣2y﹣3=0 D.x+2y﹣3=0参考答案:B【考点】直线与圆的位置关系.【专题】计算题;方程思想;综合法;直线与圆.【分析】求出以(3,1)、C(1,0)为直径的圆的方程,将两圆的方程相减可得公共弦AB的方程.【解答】解:圆x2+y2﹣2x=0,可化为(x﹣1)2+y2=1的圆心为C(1,0),半径为1,以(3,1)、C(1,0)为直径的圆的方程为(x﹣2)2+(y﹣)2=,将两圆的方程相减可得公共弦AB的方程2x+y﹣3=0,故选:B.【点评】本题考查直线和圆的位置关系以及圆和圆的位置关系、圆的切线性质,体现了数形结合的数学思想,属于基础题.7.已知函数f(x)的导函数f′(x)=a(x+b)2+c(a≠0)的图象如图所示,则函数f(x)的图象可能是()A. B. C. D.参考答案:D【考点】63:导数的运算;3O:函数的图象.【分析】根据导数和函数的单调性的关系即可判断.【解答】解:由f′(x)图象可知,函数f(x)先减,再增,再减,故选:D.8.如图所示,把1,3,6,10,15,21,…这些数叫做三角形数,这是因为这些数目的点可以排成一个正三角形,试求第七个三角形数是(

)A.27 B.28 C.29 D.30参考答案:B【分析】根据已知归纳出第个三角形数是,即可求出结论.【详解】依题意,第个三角形数是.故选:B.9.函数在点处的切线方程为(

)A. B.C. D.参考答案:B【分析】首先求出函数在点处的导数,也就是切线的斜率,再利用点斜式求出切线方程..【详解】∵,∴切线斜率,又∵,∴切点为,∴切线方程,即.故选B.【点睛】本题考查导数的几何意义,属于基础题.10.设函数是定义在R上的奇函数,当时,则的零点个数为(

)A.1

B.2

C.3

D.4参考答案:C二、填空题:本大题共7小题,每小题4分,共28分11.设为常数,若点是双曲线的一个焦点,则

。参考答案:略12.甲、乙、丙三人站成一排,则甲、乙相邻的概率是_________.参考答案:试题分析:甲、乙、丙三人站成一排,共有种排法,其中甲、乙相邻共有种排法,因此所求概率考点:古典概型概率【方法点睛】古典概型中基本事件数的计算方法(1)列举法:此法适合于较简单的试验.(2)树状图法:树状图是进行列举的一种常用方法,适合较复杂问题中基本事件数的探求.(3)列表法:对于表达形式有明显二维特征的事件采用此法较为方便.(4)排列、组合数公式法.13.从6本不同的书中选3本送给3名同学,每人各1本,有多少种不同送法

参考答案:12014.设曲线在点处的切线与x轴交点的横坐标为,令,则的值为__________。参考答案:略15.已知数列,,计算数列的第20项。现已给出该问题算法的程序框图(如图所示)。为使之能完成上述的算法功能,则在右图判断框中(A)处应填上合适的语句是

;在处理框中(B)处应填上合适的语句是

参考答案:(A)(或)(B)略16.对大于或等于2的自然数m的3次方幂有如下分解方式:2=3+5,最小数是3,3=7+9+11,最小数是7,4=13+15+17+19,最小数是13.根据上述分解规律,在9的分解中,最小数是

.参考答案:

73略17.已知圆柱的上、下底面的中心分别为O1、O2,过直线O1O2的平面截该圆柱所得的截面是面积为8的正方形,则该圆柱的侧面积为_____.参考答案:8π【分析】根据题意求出圆柱的底面圆半径和高,再计算圆柱的侧面积即可.【详解】如图所示,设圆柱的底面圆半径为,由截面为正方形可知圆柱的高,所以该圆柱的轴截面面积为,解得,该圆柱的侧面积为.故答案为:.【点睛】本题考查圆柱的结构特征,考查圆柱侧面积的求法,属于基础题.三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.已知函数f(x)=2sinxsin(x+).(1)求函数f(x)的最小正周期和单调递增区间;(2)当x∈[0,]时,求f(x)的值域.参考答案:【考点】GL:三角函数中的恒等变换应用;H1:三角函数的周期性及其求法.【分析】(1)运用两角和差公式和二倍角公式,化简整理,再由周期公式和正弦函数的单调增区间,即可得到;(2)由x的范围,可得2x﹣的范围,再由正弦函数的图象和性质,即可得到值域.【解答】解:(1)f(x)=2sinxsin(x+)=2sinx(sinx+cosx)=sin2x+sinxcosx=+sin2x=+sin(2x﹣)则函数f(x)的最小正周期T==π,由2k≤2kπ+,k∈Z,解得,kπ﹣≤x≤kπ+,k∈Z,则f(x)的单调递增区间为[kπ﹣,kπ+],k∈Z;(2)当x∈[0,]时,2x﹣∈[﹣,],sin(2x﹣)∈[﹣,1],则f(x)的值域为[0,1+].19.在直角坐标系xOy中,曲线C1的参数方程为(α为参数),直线C2的方程为,以O为极点,以x轴的正半轴为极轴建立极坐标系.(1)求曲线C1和直线C2的极坐标方程;(2)若直线C2与曲线C1交于A,B两点,求.参考答案:(1)极坐标方程为,(2).【分析】(1)根据极坐标和直角坐标的互化公式得极坐标方程为ρ2﹣4ρcosθ﹣4ρsinθ+7=0直线C2的方程为y=,极坐标方程为;(2)直线C2与曲线C1联立,可得ρ2﹣(2+2)ρ+7=0,【详解】(1)曲线C1的参数方程为(α为参数),直角坐标方程为(x﹣2)2+(y﹣2)2=1,即x2+y2﹣4x﹣4y+7=0,极坐标方程为ρ2﹣4ρcosθ﹣4ρsinθ+7=0直线C2的方程为y=,极坐标方程为;(2)直线C2与曲线C1联立,可得ρ2﹣(2+2)ρ+7=0,设A,B两点对应的极径分别为ρ1,ρ2,则ρ1+ρ2=2+2,ρ1ρ2=7,.【点睛】:深刻理解极坐标中ρ的几何意义,代表了曲线上的点到极点的距离,从而得到.20.已知袋子中放有大小和形状相同的小球若干,其中标号为0的小球1个,标号为1的小球1个,标号为2的小球n个.若从袋子中随机抽取1个小球,取到标号为2的小球的概率是.(1)求n的值;(2)从袋子中有放回地随机抽取2个小球,记第一次取出的小球标号为a,第二次取出的小球标号为b.①记“”为事件A,求事件A的概率;②在区间[0,2]内任取2个实数x,y,求事件“恒成立”的概率.参考答案:解:(1)依题意,得.①记标号为0的小球为,标号为1的小球为,标号为2的小球为,则取出2个小球的可能情况有:,,,共16种,其中满足“”的有5种:.所以所求概率为②记“恒成立”为事件B,则事件B等价于“”恒成立,可以看成平面中的点的坐标,则全部结果所构成的区域为,而事件B构成的区域为.所以所求的概率为

21.(本小题满分12分)已知二次函数满足,.(1)求的解析式;(2)求在上的最大值和最小值.参考

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论