版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
3.1.2指数函数(第一课时)教一、课题:3.1.2二、课型:新授课三、教学目标1、知识目标(直接性目标):理解指数函数的概念,掌握指数函数的图象、性质及其简单应用2、能力目标(发展性目标):通过教学培养学生观察、分析、归纳等思维能力,体会数形结合和分类讨论、方程的思想以及从特殊到一般的学习数学的方法,增强识图用图的能力3、情感目标(可持续性目标):通过学习,使学生学会认识事物的特殊性与一般性之间的关系,构建和谐的课堂氛围,培养学生勇于提问,善于探索的思维品质,认识到数学来源于生活,并且服务于生活。四、教学重点和难点。重点:指数函数的图象、性质及其应用难点:用数形结合的方法,从具体到一般的探索指数函数图象,概括指数函数性质的过程。五、教法学法教法:启发诱导和合作探究相结合,引导学生主动观察与思考,合作交流、共同探索来完成本节课的教学。学法:从学生原有的函数概念、性质等知识出发,组织、引导学生独立思考,通过合作交流、共同探索来寻求用从具体到一般的思想解决问题的方法。六、教学基本流程从指数函数的实际背景引入课题从指数函数的实际背景引入课题构建指数函数的概念画指数函数的图象课堂小结与作业典例剖析与随堂训练探索指数函数的性质七、教学过程设计(一)创设情境、导入新课问题1:问题2:细胞个数y与分裂次数x有什么关系?剩余绳长y与剪断次数x有什么关系对折次数层数1
2
3
…
x
对折次数面积123…x学情预设:引导学生思考具体的问题设计意图:用函数的观点来分析问题,为引出指数函数的模型(a>0且a≠1)做准备,以利于学生体会指数函数的概念来自于生活,并且服务于生活。(二)师生互动、探究新知1.指数函数的定义老师:提出探究问题1:上述问题中的两个对应关系能否构成函数关系?提出探究问题2:上述两个函数有什么样的共同特征?学生:通过思考讨论不难得出探究1的结论:能够构成函数关系。引导学生通过观察得出两个函数的共同特征:(1)幂的形式都一样;(2)幂的底数都是一个正常数;(3)幂的指数都是一个变量。老师:如果可以用字母a代替其中的底数,那么上述两式就可以表示成的形式,自变量在指数位置,我们把具有这种形式的函数叫做指数函数。设计意图:引导学生从具体问题、实际问题中抽象出指数函数的模型,由学生归纳出指数函数的概念,培养学生观察、分析、归纳等抽象思维能力。指数函数:一般地,函数(a>0且a≠1)叫做指数函数,其中x为自变量,a是常数,定义域为R。、老师:定义中底数a满足a>0且a≠1,为什么定义中规定a>0且a≠1呢?然后引导学生探讨若不满足条件时,会怎样呢?学生:通过交流合作、教师引导,可以得出如下结论:(1)若a=0,则当x>0时,。当x≤0时,无意义。(2)若a<0,则对于x的某些数值,可使无意义。如,这时对于,,……,在实数范围内函数值不存在。(3)若a=1,则对于任何,是一个常量,没有研究的必要性。以上三种情况都不利于我们研究指数函数,所以规定:a>0且a≠1.设计意图:1.通过对a的范围的具体分析,使学生进一步掌握指数函数一般形式。2.讨论出a>0且a≠1,为下面研究性质是对底数的分类做准备.老师:学习了指数函数的定义,如何判断一个函数是否是指数函数?(通过多媒体给出随堂练习)下列函数中,哪些是指数函数?(1)(2)(3)(4)(5)(6)学生:分组讨论,合作交流,找出代表回答。答案:(1)(3)(4)是。(2)(5)(6)不是学情预设:学生可能会在(4)的判断上出现错误。在学生判断的过程中我适时给予指导,提醒学生必须抓住本质,不要只看表面。设计意图:进一步加深学生对指数函数概念的理解,使学生认识到“指数函数”的定义是形式定义。2.指数函数的性质老师:在前面的学习中,我们是从哪些方面来研究函数?学生:函数三要素(对应法则、定义域、值域)、函数图象和函数的基本性质(单调性、奇偶性等)。设计意图:培养学生的思维习惯,即应从哪些方面,哪些角度去探索一个具体函数。老师:指数函数是我们在学习了函数基本概念和性质以后接触到的第一个具体函数。根据这个思路,同学们先来完成下面的问题:请同学们先动手画一画下面两个函数的图象。在学生画图的过程中,进一步明确作图的一般步骤(列表→描点→连线)最后在多媒体上将这两个图象给予展示,并现场用几何画板演示另外两个指数函数的图象形成过程。学情预设:要求学生用描点法画出函数y=2x和的图象.接下来用多媒体给出y=2x、、y=3x、这四个函数的图象,引导学生观察图象,组织学生讨论,合作交流,得出a>1和0<a<1这两种情况在图象上的特点。在此环节中,学生通过对具体的函数进行观察归纳,合作交流,加之多媒体的演示,将具体化为抽象。最后我先给出表格,引导学生小组讨论,根据图象填写表格。思考2:通过图象,你能发现指数函数的哪些特征?1、图象在直角坐标系的哪些象限?2、图象与坐标轴的相交情况?3、图象的上升下降趋势与底数有什么关系?4、在y轴的两侧函数值的范围分别是多少?设计意图:1.通过引导学生对具体的函数进行观察归纳,合作交流,更好的让学生体会从具体到一般的思想方法。2.提高学生的动手能力,将具体化为抽象,并感受了对底数的分类讨论的思维方式,从而达到了突破重点的目的.y0y=1(0,1)指数函数(a>0且a≠1)y0y=1(0,1)0<a<1a>1图象yyx0y=1(0,1)xx定义域R值域(0,+∞)性质定点过(0,1),即x=0时,y=1单调性在R上是减函数在R上是增函数设计意图:通过观察图象的特点和函数性质的建构培养学生的数形结合思想、分类讨论思想和抽象概括思想,同时表格的完成将会使学生体会到很大的成功感,也将学生思考的热情带入高潮。(三)典例分析、巩固训练例1:例1.比较大小⑴⑵⑶解:⑴考虑指数函数.因为所以在上是增函数.因为所以下面的两个小题请两个同学上来板书。也是利用指数函数的性质。.设计意图:利用指数函数的单调性判断大,引导学生观察这些指数值的特征,思考比较大小的方法。解答:(1)(2)两题底相同,指数不同(3)题底不同,指数也不同,可以借助中间值1,再用单调性比较大小。例2:例2(1)已知,求实数的取值范围;(2)(3)设计意图:利用指数函数的单调性解不等式,引导学生注意分类讨论的方法。练习:比较下列各题中两个值的大小:(1)与33(2),。1设计意图:是对于例题的强化训练,学生自己思考或讨论,回忆比较数的大小的方法,结合题实际,选择合理的方法比较数的大小,一是利用函数的单调性;二是中间量法。
设计意图:这是指数函数性质的简单应用,使学生在解题过程中加深对指数函数的图像及性质的理解和记忆,再比较大小。(四)小结归纳(1)通过本节课的学习,你学到了哪些知识?1.指数函数的概念;2.指数函数的图象及其性质(2)你学会了哪些数学思想方法?数形结合思想、分类讨论思想、方程的思想、从特殊到一般的抽象概括的方法。设计意图:通过两个问题让学生在小结中明确本节课的学习内容和方法,进一步强化本节课的学习重点。(五)布置作业(1)必做题:课本59页,A组5,7,8(2)选做题:课本60页,B组4。设计意图:遵循因材施教的原则,尊重学生的个体差异,让不同的学生有不同的发展。使基础一般的同学可以通过必做题巩固知识,基础好的同学可以有拓展的空间。(六)板书设计2.1.2.指数函数及其性质一.指数函数的概念二.图象和性质三.应用1.定义表格(略)例1.2.几点说明
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 高中音乐的教学计划高中音乐鉴赏教学计划
- 售后201年工作计划
- 学生会工作总结与计划怎么写
- 2025年初中化学教师下半年工作计划范文
- 2025学校教研室工作计划范文
- 2025年秋季二年级上册班主任工作计划报告
- 英语课标教师教学计划
- 2025年高一英语教学计划例文
- 《地质工程毕业设计》课件
- 《高血压规范化管理》课件
- 收购公司法律尽职调查合同(2篇)
- 第六单元多边形的面积 (单元测试)-2024-2025学年五年级上册数学人教版
- 天津市南开区2023-2024学年四年级上学期期末英语试题
- 初中语文部编版七年级上册期末复习词语成语运用练习题(附参考答案)
- 专题四“挺膺担当”主题团课
- 碱炉安装浅谈
- 硬笔书法田字格纸张
- 概率论与数理统计课后习题与答案
- 建渣处置-运输方案(共4页)
- 文件交接(模板)
- 家长会邀请函模板
评论
0/150
提交评论