版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1.3二项式定理1.二项式定理[学习目标]1.能用计数原理证明二项式定理.2.掌握二项式定理及其展开式的通项公式.3.会用二项式定理解决与二项展开式有关的简单问题.[知识链接]1.二项式定理中,项的系数与二项式系数有什么区别?答二项式系数与项的系数完全是不同的两个概念.二项式系数是指Ceq\o\al(0,n),Ceq\o\al(1,n),…,Ceq\o\al(n,n),它只与各项的项数有关,而与a,b的值无关,而项的系数是指该项中除变量外的常数部分,它不仅与各项的项数有关,而且也与a,b的值有关.2.二项式(a+b)n与(b+a)n展开式中第r+1项是否相同?答不同.(a+b)n展开式中第r+1项为Ceq\o\al(r,n)an-rbr,而(b+a)n展开式中第r+1项为Ceq\o\al(r,n)bn-rar.[预习导引]1.二项式定理公式(a+b)n=Ceq\o\al(0,n)an+Ceq\o\al(1,n)an-1b+…+Ceq\o\al(k,n)an-kbk+…+Ceq\o\al(n,n)bn(n∈N*)叫做二项式定理.2.二项式系数及通项(1)(a+b)n展开式共有n+1项,其中各项的系数Ceq\o\al(k,n)(k∈{0,1,2,…,n})叫做二项式系数.(2)(a+b)n展开式的第k+1项叫做二项展开式的通项,记作Tk+1=Ceq\o\al(k,n)an-kbk.要点一二项式定理的正用、逆用例1(1)求(3eq\r(x)+eq\f(1,\r(x)))4的展开式;(2)化简(x-1)5+5(x-1)4+10(x-1)3+10(x-1)2+5(x-1).解(1)法一(3eq\r(x)+eq\f(1,\r(x)))4=Ceq\o\al(0,4)(3eq\r(x))4+Ceq\o\al(1,4)(3eq\r(x))3·eq\f(1,\r(x))+Ceq\o\al(2,4)(3eq\r(x))2·(eq\f(1,\r(x)))2+Ceq\o\al(3,4)(3eq\r(x))·(eq\f(1,\r(x)))3+Ceq\o\al(4,4)·(eq\f(1,\r(x)))4=81x2+108x+54+eq\f(12,x)+eq\f(1,x2).法二(3eq\r(x)+eq\f(1,\r(x)))4=eq\f((3x+1)4,x2)=eq\f(1,x2)[1+Ceq\o\al(1,4)·3x+Ceq\o\al(2,4)(3x)2+Ceq\o\al(3,4)(3x)3+Ceq\o\al(4,4)(3x)4]=eq\f(1,x2)(81x4+108x3+54x2+12x+1)=81x2+108x+54+eq\f(12,x)+eq\f(1,x2).(2)原式=Ceq\o\al(0,5)(x-1)5+Ceq\o\al(1,5)(x-1)4+Ceq\o\al(2,5)(x-1)3+Ceq\o\al(3,5)(x-1)2+Ceq\o\al(4,5)(x-1)+Ceq\o\al(5,5)-1=[(x-1)+1]5-1=x5-1.规律方法运用二项式定理展开二项式,要记准展开式的通项公式,对于较复杂的二项式,有时先化简再展开更简捷;要搞清楚二项展开式中的项以及该项的系数与二项式系数的区别.逆用二项式定理可将多项式化简,对于这类问题的求解,要熟悉公式的特点、项数、各项幂指数的规律以及各项的系数.跟踪演练1(1)展开(2eq\r(x)+eq\f(1,\r(x)))6;(2)化简:1+2Ceq\o\al(1,n)+4Ceq\o\al(2,n)+…+2nCeq\o\al(n,n).解(1)(2eq\r(x)+eq\f(1,\r(x)))6=eq\f(1,x3)(2x+1)6=eq\f(1,x3)[Ceq\o\al(0,6)(2x)6+Ceq\o\al(1,6)(2x)5+Ceq\o\al(2,6)(2x)4+Ceq\o\al(3,6)(2x)3+Ceq\o\al(4,6)(2x)2+Ceq\o\al(5,6)(2x)+Ceq\o\al(6,6)]=64x3+192x2+240x+160+eq\f(60,x)+eq\f(12,x2)+eq\f(1,x3).(2)原式=1+2Ceq\o\al(1,n)+22Ceq\o\al(2,n)+…+2nCeq\o\al(n,n)=(1+2)n=3n.要点二二项展开式通项的应用例2若(eq\r(x)+eq\f(1,2\r(4,x)))n展开式中前三项系数成等差数列,求:(1)展开式中含x的一次项;(2)展开式中的所有有理项.解(1)由已知可得Ceq\o\al(0,n)+Ceq\o\al(2,n)·eq\f(1,22)=2Ceq\o\al(1,n)·eq\f(1,2),即n2-9n+8=0,解得n=8,或n=1(舍去).Tk+1=Ceq\o\al(k,8)(eq\r(x))8-k·(eq\f(1,2\r(4,x)))k=Ceq\o\al(k,8)·2-k·x4-eq\f(3,4)k,令4-eq\f(3,4)k=1,得k=4.所以x的一次项为T5=Ceq\o\al(4,8)2-4x=eq\f(35,8)x.(2)令4-eq\f(3,4)k∈Z,且0≤k≤8,则k=0,4,8,所以含x的有理项分别为T1=x4,T5=eq\f(35,8)x,T9=eq\f(1,256x2).规律方法利用二项式的通项公式求二项展开式中具有某种特征的项是关于二项式定理的一类典型题型.常见的有求二项展开式中的第r项、常数项、含某字母的r次方的项等等.其通常解法就是根据通项公式确定Tk+1中k的值或取值范围以满足题设的条件.跟踪演练2已知二项式(x2+eq\f(1,2\r(x)))10.(1)求展开式中的第5项;(2)求展开式中的常数项.解(1)(x2+eq\f(1,2\r(x)))10的展开式的第5项为T5=Ceq\o\al(4,10)·(x2)6·(eq\f(1,2\r(x)))4=Ceq\o\al(4,10)·(eq\f(1,2))4·x12·(eq\f(1,\r(x)))4=eq\f(105,8)x10.(2)设第k+1项为常数项,则Tk+1=Ceq\o\al(k,10)·(x2)10-k·(eq\f(1,2\r(x)))k=Ceq\o\al(k,10)·x20-eq\f(5,2)k·(eq\f(1,2))k(k=0,1,2,…,10),令20-eq\f(5,2)k=0,得k=8,所以T9=Ceq\o\al(8,10)·(eq\f(1,2))8=eq\f(45,256),即第9项为常数项,其值为eq\f(45,256).要点三二项式定理的应用例3(1)用二项式定理证明:34n+2+52n+1能被14整除;(2)求9192除以100的余数.(1)证明34n+2+52n+1=92n+1+52n+1=[(9+5)-5]2n+1+52n+1=(14-5)2n+1+52n+1=142n+1-Ceq\o\al(1,2n+1)×142n×5+Ceq\o\al(2,2n+1)×142n-1×52-…+Ceq\o\al(2n,2n+1)×14×52n-Ceq\o\al(2n+1,2n+1)×52n+1+52n+1=14(142n-Ceq\o\al(1,2n+1)×142n-1×5+Ceq\o\al(2,2n+1)×142n-2×52-…+Ceq\o\al(2n,2n+1)×52n).上式是14的倍数,能被14整除,所以34n+2+52n+1能被14整除.(2)解法一9192=(100-9)92=10092-Ceq\o\al(1,92)×10091×9+Ceq\o\al(2,92)×10090×92-…-Ceq\o\al(91,92)×100×991+992,前面各项均能被100整除,只有末项992不能被100整除,于是求992除以100的余数.∵992=(10-1)92=1092-Ceq\o\al(1,92)×1091+Ceq\o\al(2,92)×1090-…+Ceq\o\al(90,92)×102-Ceq\o\al(91,92)×10+(-1)92=1092-Ceq\o\al(1,92)×1091+Ceq\o\al(2,92)×1090-…+Ceq\o\al(90,92)×102-920+1=(1092-Ceq\o\al(1,92)×1091+Ceq\o\al(2,92)×1090-…+Ceq\o\al(90,92)×102-1000)+81,∴被100除的余数为81,即9192除以100的余数为81.法二由9192=(90+1)92=Ceq\o\al(0,92)×9092+Ceq\o\al(1,92)×9091+…+Ceq\o\al(90,92)902+Ceq\o\al(91,92)×90+1,可知前面各项均能被100整除,只有末尾两项不能被100整除,由于Ceq\o\al(91,92)×90+1=8281=8200+81,故9192除以100的余数为81.规律方法利用二项式定理可以解决求余数和整除的问题,通常需将底数化成两数的和与差的形式,且这种转化形式与除数有密切的关系.跟踪演练3求证:5151-1能被7整除.证明∵5151-1=(49+2)51-1=Ceq\o\al(0,51)4951+Ceq\o\al(1,51)4950×2+…+Ceq\o\al(50,51)×49×250+Ceq\o\al(51,51)×251-1.∴易知除(Ceq\o\al(51,51)×251-1)以外各项都能被7整除.又251-1=(23)17-1=(7+1)17-1=Ceq\o\al(0,17)×717+Ceq\o\al(1,17)×716+…+Ceq\o\al(16,17)×7+Ceq\o\al(17,17)-1=7(Ceq\o\al(0,17)716+Ceq\o\al(1,17)715+…+Ceq\o\al(16,17)),显然能被7整除,所以(5151-1)能被7整除.1.若(1+eq\r(2))4=a+beq\r(2)(a,b为有理数),则a+b等于()A.33B.29C.23D.19答案B解析∵(1+eq\r(2))4=1+4eq\r(2)+12+8eq\r(2)+4=17+12eq\r(2)=a+beq\r(2),又∵a,b为有理数,∴a=17,b=12.∴a+b=29.2.在(1-x)5-(1-x)6的展开式中,含x3的项的系数是()A.-5B.5C.-10D.10答案D解析(1-x)5中x3的系数-Ceq\o\al(3,5)=-10,-(1-x)6中x3的系数为-Ceq\o\al(3,6)·(-1)3=20,故(1-x)5-(1-x)6的展开式中x3的系数为10.3.求(2x-eq\f(3,2x2))5的展开式.解先化简再求展开式,得(2x-eq\f(3,2x2))5=eq\f((4x3-3)5,32x10)=eq\f(1,32x10)[Ceq\o\al(0,5)(4x3)5+Ceq\o\al(1,5)(4x3)4(-3)+Ceq\o\al(2,5)(4x3)3(-3)2+Ceq\o\al(3,5)(4x3)2(-3)3+Ceq\o\al(4,5)(4x3)(-3)4+Ceq\o\al(5,5)(-3)5]=32x5-120x2+eq\f(180,x)-eq\f(135,x4)+eq\f(405,8x7)-eq\f(243,32x10).1.注意区分项的二项式系数与系数的概念.2.要牢记Ceq\o\al(k,n)an-kbk是展开式的第k+1项,不要误认为是第k项.3.求解特定项时必须合并通项公式中同一字母的指数,根据具体要求,令其为特定值.一、基础达标1.(x+2)6的展开式中x3的系数是 ()A.20 B.40 C.80 D.160答案D解析法一设含x3的为第r+1项,则Tr+1=Ceq\o\al(r,6)x6-r·2r,令6-r=3,得r=3,故展开式中x3的系数为Ceq\o\al(3,6)×23=160.法二根据二项展开式的通项公式的特点:二项展开式每一项中所含的x与2分得的次数和为6,则根据条件满足条件x3的项按3与3分配即可,则展开式中x3的系数为Ceq\o\al(3,6)×23=160.2.(2023·江西理)(x2-eq\f(2,x3))5展开式中的常数项为 ()A.80 B.-80 C.40 D.-40答案C解析展开式的通项公式为Tk+1=Ceq\o\al(k,5)(x2)5-k(-eq\f(2,x3))k=Ceq\o\al(k,5)x10-5k(-2)k.由10-5k=0,得k=2,所以常数项为T2+1=Ceq\o\al(2,5)(-2)2=40.3.(x-eq\r(2)y)10的展开式中x6y4项的系数是 ()A.840 B.-840 C.210 D.-210答案A解析在通项公式Tr+1=Ceq\o\al(r,10)(-eq\r(2)y)rx10-r中,令r=4,即得(x-eq\r(2)y)10的展开式中x6y4项的系数为Ceq\o\al(4,10)·(-eq\r(2))4=840.4.(2023·辽宁理)使得(3x+eq\f(1,x\r(x)))n(n∈N*)的展开式中含有常数项的最小的n为()A.4 B.5 C.6 D.7答案B解析展开式的通项公式为Tk+1=Ceq\o\al(k,n)(3x)n-k·(eq\f(1,x\r(x)))k=Ceq\o\al(k,n)3n-kxn-eq\f(5k,2).由n-eq\f(5k,2)=0得n=eq\f(5k,2),所以当k=2时,n有最小值5.5.求(3b+2a)6的展开式中的第3项的系数为________,二项式系数为________.答案4860156.(2023·四川理)二项式(x+y)5的展开式中,含x2y3的项的系数是________(用数字作答).答案10解析设二项式(x+y)5的展开式的通项公式为Tr+1,则Tr+1=Ceq\o\al(r,5)x5-ryr,令r=3,则含x2y3的项的系数是Ceq\o\al(3,5)=10.7.已知在(eq\r(x)+eq\f(2,x2))n的展开式中,第5项的系数与第3项的系数之比为56∶3,求展开式中的常数项.解T5=Ceq\o\al(4,n)(eq\r(x))n-424x-8=16Ceq\o\al(4,n)xeq\f(n-20,2),T3=Ceq\o\al(2,n)(eq\r(x))n-222x-4=4Ceq\o\al(2,n)xeq\f(n-10,2).由题意知,eq\f(16Ceq\o\al(4,n),4Ceq\o\al(2,n))=eq\f(56,3),解得n=10.Tk+1=Ceq\o\al(k,10)(eq\r(x))10-k2kx-2k=2kCeq\o\al(k,10)xeq\f(10-5k,2),令eq\f(10-5k,2)=0,解得k=2,∴展开式中的常数项为Ceq\o\al(2,10)22=180.二、能力提升8.设S=(x-1)3+3(x-1)2+3(x-1)+1,则S等于 ()A.(x-1)3 B.(x-2)3C.x3 D.(x+1)3答案C解析S=Ceq\o\al(0,3)(x-1)3+Ceq\o\al(1,3)(x-1)2×1+Ceq\o\al(2,3)(x-1)×12+Ceq\o\al(3,3)×13=[(x-1)+1]3=x3,故选C.9.(2023·新课标Ⅱ)已知(1+ax)(1+x)5的展开式中x2的系数为5,则a等于()A.-4 B.-3 C.-2 D.-1答案D解析(1+ax)(1+x)5的展开式中x2的系数为Ceq\o\al(2,5)+a·Ceq\o\al(1,5)=5,解得a=-1.10.对于二项式(eq\f(1,x)+x3)n(n∈N*),有以下四种判断:①存在n∈N*,展开式中有常数项;②对任意n∈N*,展开式中没有常数项;③对任意n∈N*,展开式中没有x的一次项;④存在n∈N*,展开式中有x的一次项.其中正确的是________.答案①与④解析二项式(eq\f(1,x)+x3)n的展开式的通项公式为Tk+1=Ceq\o\al(k,n)x4k-n,由通项公式可知,当n=4k(k∈N*)和n=4k-1(k∈N*)时,展开式中分别存在常数项和一次项.11.(eq\r(x)+eq\f(2,\r(3,x)))n展开式第9项与第10项二项式系数相等,求x的一次项系数.解Ceq\o\al(8,n)=Ceq\o\al(9,n),∴n=17,Tr+1=Ceq\o\al(r,17)xeq\f(17-r,2)·2r·x-eq\f(r,3),∴eq\f(17-r,2)-eq\f(r,3)=1,∴r=9,∴T10=Ceq\o\al(9,17)·x4·29·x-3=Ceq\o\al(9,17)·29·x,其一次项系数为Ceq\o\al(9,17)29.12.已知在(eq\f(1,2)x2-eq\f(1,\r(x)))n的展开式中,第9项为常数项,求:(
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 江苏省2024-2025学年高一上学期百校联考语文试卷及答案
- 瘢痕的临床护理
- 《计算机的存储系统》课件
- 肛门及肛周疱疹性疾病的临床护理
- 《供用电技术管理》课件
- 孕期子宫内膜脱落的健康宣教
- 《机械制造基础》课件-05篇 第七单元 数控高速切削
- 《队列训练教程》课件
- 甲状旁腺功能亢进的临床护理
- JJF(陕) 109-2023 直流换流阀试验装置校准规范
- 广东省汕头市潮阳区2023-2024学年高二上学期期末考试 地理 含答案
- 国家电网招聘之财务会计类题库有答案
- 机械工程测试技术知到智慧树章节测试课后答案2024年秋安徽理工大学
- DB36T 1476-2021 碳普惠平台建设技术规范
- GB 45067-2024特种设备重大事故隐患判定准则
- 职业本科《大学英语》课程标准
- 东亚研究智慧树知到期末考试答案章节答案2024年广东外语外贸大学
- JTGT F20-2015 公路路面基层施工技术细则
- 小学二年级上册美术期末试卷
- 楼栋燃气调压箱零部件、放散压力和切断压力典型设置实例、常见故障、原因及处理方法
- 设计资料保密协议
评论
0/150
提交评论