模拟电子技术经典教程-三极管_第1页
模拟电子技术经典教程-三极管_第2页
模拟电子技术经典教程-三极管_第3页
模拟电子技术经典教程-三极管_第4页
模拟电子技术经典教程-三极管_第5页
已阅读5页,还剩59页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

§2.2.1三极管的结构和工作原理分类按频率分有高频管、低频管按功率分有小、中、大功率管按材料分有硅管、锗管按结构分有NPN型和PNP型国产三极管的命名方式3DG6三极管表示器件材料和极性高频管设计序号A:PNP锗材料B:NPN锗材料D:NPN硅材料C:PNP硅材料三极管命名规则命名规则:符号的第一部分“3”表示三极管。符号的第二部分表示器件的材料和结构:A——PNP型锗材料;B——NPN型锗材料;C——PNP型硅材料;D——NPN型硅材料。符号的第三部分表示功能:U——光电管;K——开关管;X——低频小功率管;G——高频小功率管;D——低频大功率管;A——高频大功率管。另外,3DJ型为场效应管,BT打头的表示半导体特殊元件。

3DK

NPN硅开关三极管

三极管的不同封装形式金属封装塑料封装大功率管中功率管三极管分类电子制作中常用的三极管有90××系列,包括低频小功率硅管9013(NPN)、9012(PNP)

低噪声管9014(NPN)

高频小功率管9018(NPN)。它们的型号一般都标在塑壳上,样子都一样,在老式的电子产品中还能见到3DG6(低频小功率硅管)、3AX31(低频小功率锗管)等,它们的型号也都印在金属的外壳上。三极管种类1、低频小功率三极管

低频小功率三极管一般指特征频率在3MHz以下,功率小于1W的三极管。一般作为小信号放大用。

低频小功率管多用于低频放大电路、低频功率放大电路。如收音机的功放电路。常用的国产管中,低频小功率三极管有:3ax31、3ax34、3ax51、3ax52-54、3ax61-63、3cx200、2cx203、3dx204、3ax81、3ax83、3bx31等。2高频小功率三极管

高频小功率三极管一般指特征频率大于3MHz,功率小于1W的三极管。主要用于高频振荡、放大电路中。高频小功率管多用于高频放大电路,混频电路,高频震荡电路等。如电视机、收录机的高频电路等。常用的国产高频小功率三极管有:3agl-3am、3agll-3agl4、3ag53、3ag54、3ag55、3ag56、3ac80、3dg6、3dg6、3dgl2、3dg79、3dg84、3dg380、3dg945、3d8l5、3dg9013-14、3dgl815、3dgl959、3dg9043、3cg21、3cgl60、3cgl70等。3低频大功率三极管

低频大功率三极管指特征频率小于3MHz,功率大于1W的三极管。低频大功率三极管品种比较多,主要应用于电子音响设备的低频功率放大电路种;用于各种大电流输出稳压电源中作为调整管。4高频大功率三极管高频大功率三极管指特征频率大于3MHz,功率大于1W的三极管。主要用于通信等设备中作为功率驱动、放大。

特殊的三极管——开关三极管开关三极管是利用控制饱和区和截止区相互转换二工作的。开关三极管的开关过程需要一定的响应时间。开关响应时间的长短表示了三极管开关特性的好坏。

三极管的选用(二)国产三极管中常用的型号三极管的参数1.常用国产高频小功率晶体管的主要参数部分进口高频小功率晶体管的主要参数2.部分国产高频中、大功率晶体管的主要参数部分进口高频中、大功率晶体管的主要参数3.部分国产低频小功率晶体管的主要参数部分进口中、低频小功率晶体管的主要参数5.常用国产低频大功率晶体管的主要参数6.常用国产小功率开关晶体管的主要参数7.部分高反压大功率开关晶体管的主要参数及封装形式部分进口中、低频大功率晶体管的主要参数8.常用大功率互补对管的主要参数常用中、小功率互补对管及其主要参数网上查询http://NNP发射区集电区基区发射极E(e)集电极C(c)发射结JE集电结JC基极B(b)NPN型晶体管结构示意图NPN型晶体管符号B(b)E(e)TC(c)NNP发射区集电区基区发射极E(e)集电极C(c)发射结JE集电结JC基极B(b)2.PNP型晶体管结构示意图和符号符号B(b)E(e)TC(c)E(e)发射区集电区基区PPNC(c)B(b)JEJC结构示意图集电区EBC发射区基区(1)发射区小,掺杂浓度高。3.晶体管的内部结构特点(具有放大作用的内部条件)平面型晶体管的结构示意图(2)集电区面积大。(3)基区掺杂浓度很低,且很薄。集电区EBC发射区基区2.1.2晶体管的工作原理(以NPN型管为例)依据两个PN结的偏置情况放大状态饱和状态截止状态倒置状态晶体管的工作状态1.发射结正向偏置、集电结反向偏置——放大状态

原理图电路图+–+–

(1)电流关系a.

发射区向基区扩散电子形成发射极电流IE发射区向基区扩散电子称扩散到基区的发射区多子为非平衡少子b.基区向发射区扩散空穴基区向发射区扩散空穴发射区向基区扩散电子形成空穴电流因为发射区的掺杂浓度远大于基区浓度,空穴电流可忽略不记。基区向发射区扩散空穴发射区向基区扩散电子c.基区电子的扩散和复合非平衡少子在基区复合,形成基极电流IBIB非平衡少子向集电结扩散非平衡少子到达集电区d.集电区收集从发射区扩散过来的电子形成发射极电流ICICIB少子漂移形成反向饱和电流ICBOe.集电区、基区少子相互漂移集电区少子空穴向基区漂移ICBO基区少子电子向集电区漂移ICIB晶体管的电流分配关系动画演示§2.2.2三极管的特性三极管在电路中的连接方式共基极连接共集电极连接共发射极连接定义称为共基极直流电流放大系数ICBOICIB各电极电流之间的关系

IE=IC+IB

ICBOICIB晶体管共射极接法原理图电路图IBICICBO定义为共射极直流电流放大系数IBICICBO当UCE>UCB时,集电结正偏,发射结反偏,晶体管仍工作于放大状态。各电极电流之间的关系ICEO称为穿透电流IBICICBO或的关系由一般情况为共基极交流电流放大系数为共射极交流电流放大系数

定义α与β的关系一般可以认为较大的ΔiE如(1mA)ΔVO=ΔiCRL(较大)ΔiC(较大)如(0.98mA)较小ΔVI如(20mV)三极管的放大作用正向时PN结电流与电压成指数关系ΔVO

iB=IB+△iBiC=iE=IC+ΔiCiE=IE+ΔiE+-+_ecbRLΔVI电压放大倍数三极管基区的电流传递作用三极管的放大作用,主要是依靠它的IE能通过基区传输,然后顺利到达集电极而实现的。故要保证此传输,一方面要满足内部条件,即发射区掺杂浓度要远大于基区掺杂浓度,基区要薄;另一方面要满足外部条件,即发射结正偏,集电结要反偏。输入电压的变化,是通过其改变输入电流,再通过输入电流的传输去控制输出电压的变化,所以是一种电流控制器件。两个要点三极管的特性曲线特性曲线是指各电极之间的电压与电流之间的关系曲线概念输入特性曲线输出特性曲线vCE=0V+-bce共射极放大电路VBBVCCvBEiCiB+-vCE

iB=f(vBE)

vCE=const(2)当集电结进入反偏状态时,vCB=vCE-vBE随着vCE的增大而增大,集电结的反偏加强。由于基区的宽度调制效应,基区变窄,基区复合减少,同样的vBE下IB减小,特性曲线右移。vCE=0VvCE

1V(1)当vCE=0V时,相当于发射结的正向伏安特性曲线。1.输入特性曲线

BJT的特性曲线(以共射极放大电路为例)输入电流与输入电压间的关系曲线当vCE>1V以后,由于集电结的反偏电压可以在单位时间内将所有到达集电结边上的载流子拉到集电极,故iC不随vCE变化,所以同样的vBE下的iB不变,特性曲线几乎重叠。iC=f(vCE)

iB=const2.输出特性曲线

BJT的特性曲线输出电流与输出电压间的关系曲线+-bce共射极放大电路VBBVCCvBEiCiB+-vCE输出特性曲线的三个区域:饱和区:的区域,发射结正偏,集电结正偏。

iC明显受vCE控制的区域,但不随iB的增加而增大。在饱和区,可近似认为vCE保持不变。对于小功率硅管,一般vCES=0.2V。放大区:此时,发射结正偏,集电结反偏。iC不随vCE变化,但随iB的增大而线性增大,且截止区:iB=0的输出曲线以下的区域。此时,发射结和集电结均反偏。iC只有很小的反向电流。如何判断三极管的电极、管型和材料发射结处于正向偏置,且对于硅管|VBE|=0.7V,锗管|VBE|=0.2V;集电结处于反向偏置,且|VCB|>1V;NPN管集电极电位比发射极电位高,PNP管集电极电位比发射极电位低。当三极管在电路中处于放大状态时例题一个BJT在电路中处于正常放大状态,测得A、B和C三个管脚对地的直流电位分别为6V,0.6V,1.3V。试判别三个管脚的极名、是硅管还是锗管?NPN型还是PNP型?-集电极管子为NPN管C-基极,B-发射极另一例题参见P302.2.2-1§2.2.3三极管的主要参数三极管的参数是用来表征管子性能优劣适应范围的,是选管的依据,共有以下三大类参数。电流放大系数极间反向电流极限参数电流放大系数交流电流放大系数bb=DIC/DIB½vCE=constb=IC/IB|

vCE

=const直流电流放大系数b共射电流放大系数+-bce共射极放大电路VBBVCCvBEiCiB+-vCE电流放大系数直流电流放大系数α=ΔiC/ΔiEα=IC/IE共基电流放大系数交流电流放大系数α与β间的关系

(2)集电极发射极间的反向饱和电流ICEO

ICEO=(1+)ICBO

极间反向电流ICEO (1)集电极基极间反向饱和电流ICBO

发射极开路时,集电结的反向饱和电流。

即输出特性曲线IB=0那条曲线所对应的Y坐标的数值。ICEO也称为集电极发射极间穿透电流。极限参数集电极最大允许电流ICM集电极最大允许功率损耗PCM三极管正常工作时集电极所允许的最大工作电流PCM值与环境温度有关,温度愈高,则PCM值愈小。当超过此值时,管子性能将变坏或烧毁。反向击穿电压V(BR)EBO:集电极开路时发射极-基极间的反向击穿电压。V(BR)CBO:发射极开路时集电极-基极间的反向击穿电压。V(BR)CEO:基极开路时集电极-发射极间的反向击穿电压安全工作区由ICM、V(BR)CEO、及PCM三个极限参数可画出三极管的安全工作区图。§2.2.4三极管的模型三极管的简化直流模型截止模型饱和模型放大模型建立小信号模型的意义建立小信号模型的思路

当放大电路的输入信号电压很小时,就可以把三极管小范围内的特性曲线近似地用直线来代替,从而可以把三极管这个非线性器件所组成的电路当作线性电路来处理。

由于三极管是非线性器件,这样就使得放大电路的分析非常困难。建立小信号模型,就是将非线性器件做线性化处理,从而简化放大电路的分析和设计。三极管的小信号模型三极管的小信号模型H参数的引出将共射连接三极管看成一双端口网络输入输出端口的函数表达式ebc对输入输出端口的两函数表达式求微分用相关符号取代上式中的微分量后得微分量用交流量取代,偏微分量用H参数取代H参数物理含义输出端交流短路时的输入电阻,即

rbe。

输入端交流开路时的反向电压传输系数,即

输出端交流短路时的电流放大系数,即。输入端交流开路时的输出电导,即1/rce。根据可得小信号模型BJT的H参数模型vbe=hieib+hrevceic=hfeib+hoevcevBEvCEiBcebiCBJT双口网络H参数等效电路H参数等效电路中需注意的几点h参数小信号模型是用于交流分析的,不能用于直流分析。h参数是在某个静态工作点测得的,其数值与静态工作点有关。h参数中的电流源和电压源都是受控源,其方向不能随意假定。hfeibicvceibvbehrevcehiehoe即rbe=hie

=hfe

ur

=hre

rce=1/hoe一般采用习惯符号则BJT的H参数模型

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论