山西省吕梁市圪台中学2021年高二数学理期末试卷含解析_第1页
山西省吕梁市圪台中学2021年高二数学理期末试卷含解析_第2页
山西省吕梁市圪台中学2021年高二数学理期末试卷含解析_第3页
山西省吕梁市圪台中学2021年高二数学理期末试卷含解析_第4页
免费预览已结束,剩余1页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

山西省吕梁市圪台中学2021年高二数学理期末试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.直线与圆相交于A、B两点,则弦AB的长等于A. B. C. D.1参考答案:B【分析】先由点到直线距公式求出圆心到直线距离,再由弦长,即可得出结果.【详解】因为圆圆心为,半径为;所以圆心到直线的距离,因此,弦长.故选B【点睛】本题主要考查求直线被圆所截的弦长,熟记几何法求解即可,属于基础题型.2.已知有右程序,如果程序执行后输出的结果是11880,那么在程序UNTIL后面的“条件”应为(

)

A、i>9

B、i>=9

C、i<=8

D、i<8

参考答案:C3.某程序框图如图所示,若输出的S=120,则判断框内为

()A. B.

C.

D.参考答案:B4.展开式中不含的项的系数绝对值的和为,不含的项的系数绝对值的和为,则的值可能为(

)A.

B.C.

D..

参考答案:D略5.若关于的方程有实根,则实数等于A.

B.

C.

D.参考答案:A6.定义平面上的区域D如下:若P为D内的任意一点,则过P点必定可以引抛物线y=mx2(m<0)的两条不同的切线,那么(

)(A)D={(x,y)|y>mx2}

(B)D={(x,y)|y>2mx2}(C)D={(x,y)|y<mx2}

(D)D={(x,y)|y<2mx2}

参考答案:A7.已知命题;命题均是第一象限的角,且,则,下列命题是真命题的是

(

)

A.

B.

C.

D.参考答案:A8.在120个零件中,一级品24个,二级品36个,三极品60个,用分层抽样法从中抽取容量为20的样本,则应抽取三极品的个数为A.2

B.4

C.6

D.10参考答案:D9.命题“若x+y=1,则xy≤1”的否命题是()A.若x+y=1,则xy>1 B.若x+y≠1,则xy≤1C.若x+y≠1,则xy>1 D.若xy>1,则x+y≠1参考答案:C【考点】四种命题.【分析】根据已知中的原命题,结论否命题的定义,可得答案.【解答】解:命题“若x+y=1,则xy≤1”的否命题是命题“若x+y≠1,则xy>1”,故选C.【点评】本题考查的知识点是四种命题,难度不大,属于基础题.10.已知集合A={x|﹣2≤x≤3},B={x|x<﹣1},则集合A∩B=() A.{x|﹣2≤x<4} B.{x|x≤3或x≥4} C.{x|﹣2≤x<﹣1} D.{x|﹣1≤x≤3}参考答案:C【考点】交集及其运算. 【专题】计算题;集合思想;定义法;集合. 【分析】由A与B,求出两集合的交集即可. 【解答】解:∵A={x|﹣2≤x≤3},B={x|x<﹣1}, ∴A∩B={x|﹣2≤x<﹣1}, 故选:C. 【点评】此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键. 二、填空题:本大题共7小题,每小题4分,共28分11.在平面直角坐标系中,设三角形ABC的顶点坐标分别为,点在线段OA上(异于端点),设均为非零实数,直线分别交于点E,F,一同学已正确算出的方程:,请你求OF的方程:_____________.参考答案:略12.等差数列110,116,122,128,……,在400与600之间共有________项.参考答案:3313.如图边长为a的等边三角形ABC的中线AF与中位线DE交于点G,已知△A¢DE是△ADE绕DE旋转过程中的一个图形(点A¢平面ABC),则下列命题中正确的是

.①动点A¢在平面ABC上的射影在线段AF上;②BC∥平面A¢DE;③三棱锥A¢-FED的体积有最大值.参考答案:①②③略14.过点(0,-2)和抛物线C:

=2只有一个公共点的直线有__________条.参考答案:315.不等式(x﹣1)(x+1)(x﹣2)<0的解集为.参考答案:(﹣∞,﹣1)∪(1,2)【考点】其他不等式的解法.【分析】通过讨论x的范围,求出不等式的解集即可.【解答】解:令(x﹣1)(x+1)(x﹣2)=0,解得:x=1或﹣1或2,x<﹣1时,x﹣1<0,x+1<0,x﹣2<0,故(x﹣1)(x+1)(x﹣2)<0,成立,﹣1<x<1时,x﹣1<0,x+1>0,x﹣2<0,故(x﹣1)(x+1)(x﹣2)>0,不成立,1<x<2时,(x﹣1)>0,(x+1)>0,(x﹣2)<0,故(x﹣1)(x+1)(x﹣2)<0,成立,x>2时,x﹣1>0,x+1>0,x﹣2>0,故(x﹣1)(x+1)(x﹣2>0,不成立,故不等式的解集是:(﹣∞,﹣1)∪(1,2),故答案为:(﹣∞,﹣1)∪(1,2).16.将全体正奇数排成一个三角形数阵:

1

3

5

7

9

11

13

15

17

19

……

按照以上排列的规律,第n行(n≥3)从左向右的第3个数为

.A、

B、

C、

D、参考答案:D17.(5分)由1、2、3、4、5组成个位数字不是3的没有重复数字的五位奇数共有个(用数字作答).参考答案:由题意,末尾数字为5或3,其余位置任意排列,所以奇数共有2×=48个故答案为:48由题意,末尾数字为5或3,其余位置任意排列,从而可得结论三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.在平面直角坐标系中,已知平行四边形的三个顶点分别是(-1,-2),(0,1),(3,2)。①求直线的方程;②求平行四边形的面积;参考答案:①因为B(0,1),C(3,2),由直线的两点式方程得直线的方程是②由点到直线的距离是,,所以,即得,所以平行四边形的面积是19.设M、N为抛物线C:上的两个动点,过M、N分别作抛物线C的切线,与x轴分别交于A、B两点,且相交于点P,若|AB|=1.(1)求点P的轨迹方程;(2)求证:△MNP的面积为一个定值,并求出这个定值.参考答案:略20.以直角坐标系的原点O为极点,x轴的正半轴为极轴建立极坐标系,已知点P的直角坐标为(1,2),点M的极坐标为,若直线l过点P,且倾斜角为,圆C以M为圆心,3为半径.(Ⅰ)求直线l的参数方程和圆C的极坐标方程;(Ⅱ)设直线l与圆C相交于A,B两点,求|PA|?|PB|.参考答案:【考点】简单曲线的极坐标方程;参数方程化成普通方程.【分析】(I)根据题意直接求直线l的参数方程和圆C的极坐标方程.(II)把代入x2+(y﹣3)2=9,利用参数的几何意义,即可得出结论.【解答】解:(Ⅰ)直线l的参数方程为(t为参数),(答案不唯一,可酌情给分)圆的极坐标方程为ρ=6sinθ.(Ⅱ)把代入x2+(y﹣3)2=9,得,设点A,B对应的参数分别为t1,t2,∴t1t2=﹣7,则|PA|=|t1|,|PB|=|t2|,∴|PA|?|PB|=7.21.如图,四棱锥P﹣ABCD中,底面ABCD为平行四边形,AB=2,AD=,∠DAB=,PD⊥AD,PD⊥DC.(Ⅰ)证明:BC⊥平面PBD;(Ⅱ)若二面角P﹣BC﹣D为,求AP与平面PBC所成角的正弦值.参考答案:【考点】MI:直线与平面所成的角;LW:直线与平面垂直的判定.【分析】(1)证明BC⊥BD,PD⊥BC,即可证明BC⊥平面PBD;(2)确定∠PBD即为二面角P﹣BC﹣D的平面角,分别以DA、DB、DP为x轴、y轴、z轴建立空间直角坐标系,用坐标表示向量及平面PBC的法向量,利用向量的数量积公式,即可求得AP与平面PBC所成角的正弦值.【解答】(1)证明:∵AB=2,AD=,∠DAB=,∴BD==1∴AB2=AD2+BD2,∴AD⊥BD,∴BC⊥BD∵PD⊥AD,PD⊥DC,∴PD⊥底面ABCD,∴PD⊥BC又∵PD∩BD=D,∴BC⊥平面PBD;(2)解:由(1)所证,BC⊥平面PBD,所以∠PBD即为二面角P﹣BC﹣D的平面角,即∠PBD=而BD=1,所以PD=,分别以DA、DB、DP为x轴、y轴、z轴建立空间直角坐标系,则A(,0,0),B(0,1,0),C(﹣,1,0),P(0,0,)所以=(﹣,0,),=(﹣,0,0),=(0,﹣1,),设平面PBC的法向量为=(a,b,c),∴可解得=(0,,1),∴AP与平面PBC所成角的正弦值为sinθ=||=.22.已知p:?x∈R,不等式x2﹣mx+>0恒成立,q:椭圆的焦点在x轴上,若“p或q”为真,“p且q”为假,求实数m的取值范围.参考答案:【考点】复合命题的真假.【专题】对应思想;综合法;简易逻辑.【分析】分别判断出p,q为真时的m的范围,通过讨论p,q的真假,得到关于m的不等

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论