山西省吕梁市北张中学高二数学理联考试题含解析_第1页
山西省吕梁市北张中学高二数学理联考试题含解析_第2页
山西省吕梁市北张中学高二数学理联考试题含解析_第3页
山西省吕梁市北张中学高二数学理联考试题含解析_第4页
免费预览已结束,剩余1页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

山西省吕梁市北张中学高二数学理联考试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.设,,,则a,b,c之间的大小关系是 (

A.c<b<a

B.c<a<b

C.a<b<c

D.b<a<c参考答案:B略2.已知△ABC的三个顶点为A(3,3,2),B(4,-3,7),C(0,5,1),则BC边上的中线长为

)A.2

B.3

C.4

D.5参考答案:B略3.在棱长为1的正方体ABCD-A1B1C1D1中,M为BB1的中点,则点D到直线A1M的距离为(

A.

B.

C.

D.参考答案:C略4.“”是“直线垂直”的(

)A.充分不必要条件

B.必要不充分条件C.充要条件

D.既不充分也不必要条件参考答案:A

5.现有A、B、C、D、E五位同学分别报名参加航模、机器人、网页制作三个兴趣小组竞赛,每人限报一组,那么不同的报名方法种数有(

)A.120种 B.5种 C.种 D.种参考答案:D【分析】先计算每个同学的报名方法种数,利用乘法原理得到答案.【详解】A同学可以参加航模、机器人、网页制作三个兴趣小组,共有3种选择.同理BCDE四位同学也各有3种选择,乘法原理得到答案为D【点睛】本题考查了分步乘法乘法计数原理,属于简单题目.6.已知为虚数单位,为实数,复数在复平面内对应的点为M,则“”是“点M在第四象限”的A.充分而不必要条件

B.必要而不充分条件C.充要条件

D.既不充分也不必要条件参考答案:C7.若方程表示焦点在轴上的椭圆,则的取值范围是(

)A.或

B.

C.且

D.

参考答案:D8.已知不等式的解集为,则不等式的解为(

)A.

B.

C.

D.参考答案:A略9.复数(i为虚数单位)在复平面内对应的点位于(

)A.第一象限

B.第二象限

C.第三象限

D.第四象限参考答案:A10.某市高三数学调研考试中,对90分以上(含90分)的成绩进行统计,其频率分布直方图如图所示,若130~140分数段的人数为90,那么90~100分数段的人数为(

)A.630

B.720

C.810

D.900

参考答案:C略二、填空题:本大题共7小题,每小题4分,共28分11.已知椭圆的中心在坐标原点,焦点在y轴上,且长轴长为12,离心率为,则椭圆方程为____________.参考答案:略12.已知椭圆的中心在原点,焦点在y轴上,若其离心率为,焦距为8,则该椭圆的方程是_________.参考答案:+=1

略13.如图,双曲线的两顶点为A1,A2,虚轴两端点为,,两焦点为F1,F2。若以A1A2为直径的圆内切于菱形F1B1F2B2,切点分别为A,B,C,D。则(Ⅰ)双曲线的离心率e=______;(Ⅱ)菱形F1B1F2B2的面积S1与矩形ABCD的面积S2的比值__________。参考答案:(1)

(2)14.已知则=

.

参考答案:2略15.某一随机变量的概率分布列如表,且E=1.5,则的值为_____________0123P0.1mn0.1

参考答案:0.216.已知实数满足,则的最小值为

.参考答案:17.抛物线上的两点、到焦点的距离之和是,则线段的中点到轴的距离是

.参考答案:2 三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.

等差数列的前项和记为,已知(1)求通项;

(2)若求。参考答案:19.某班级共派出n+1个男生和n个女生参加学校运动会的入场仪式,其中男生甲为领队.入场时,领队男生甲必须排第一个,然后女生整体在男生的前面,排成一路纵队入场,共有En种排法;入场后,又需从男生(含男生甲)和女生中各选一名代表到主席台服务,共有Fn种选法.(1)试求En和Fn;(2)判断lnEn和Fn的大小(n∈N+),并用数学归纳法证明.参考答案:【考点】数学归纳法.【分析】(1)根据领队男生甲必须排第一个,然后女生整体在男生的前面,排成一路纵队入场,可得En;根据从男生(含男生甲)和女生中各选一名代表到主席台服务,可得Fn;(2)lnEn=2lnn!,Fn=n(n+1),猜想2lnn!<n(n+1),再用数学归纳法证明,第2步的证明,利用分析法进行证明.【解答】解:(1)根据领队男生甲必须排第一个,然后女生整体在男生的前面,排成一路纵队入场,可得;根据从男生(含男生甲)和女生中各选一名代表到主席台服务,可得…4分(2)因为lnEn=2lnn!,Fn=n(n+1),所以lnE1=0<F1=2,lnE2=ln4<F2=6,lnE3=ln36<F3=12,…,由此猜想:当n∈N*时,都有lnEn<Fn,即2lnn!<n(n+1)…6分下用数学归纳法证明2lnn!<n(n+1)(n∈N*).①当n=1时,该不等式显然成立.②假设当n=k(k∈N*)时,不等式成立,即2lnk!<k(k+1),则当n=k+1时,2ln(k+1)!=2ln(k+1)+2lnk!<2ln(k+1)+k(k+1),要证当n=k+1时不等式成立,只要证:2ln(k+1)+k(k+1)≤(k+1)(k+2),只要证:ln(k+1)≤k+1…8分令f(x)=lnx﹣x,x∈(1,+∞),因为,所以f(x)在(1,+∞)上单调递减,从而f(x)<f(1)=﹣1<0,而k+1∈(1,+∞),所以ln(k+1)≤k+1成立,则当n=k+1时,不等式也成立.综合①②,得原不等式对任意的n∈N*均成立…10分20.某工艺厂有铜丝5万米,铁丝9万米,准备用这两种材料编制成花篮和花盆出售,已知一只花篮需要用铜丝200米,铁丝300米;编制一只花盆需要铜丝100米,铁丝300米,该厂准备用这些原料编制x个花篮,y个花盆.(Ⅰ)试列出x,y满足的关系式,并画出相应的平面区域;(Ⅱ)若出售一个花篮可获利300元,出售一个花盆可获利200元,那么怎样安排花篮与花盆的编制个数,可使得所得利润最大,最大利润是多少?参考答案:(1)由已知,得x,y满足的关系为,即,该二元一次不等式组所表示的平面区域如图中阴影部分中的整点所示(2)设该厂所得利润为z百元,则目标函数为,将变形为,其图象是斜率为,在y轴上截距为的直线l.由图可知,当直线l经过可行域上的点M时,截距最大.解方程组,得,,点M的坐标为(200,100).所以故该厂编成200个花篮,100个花盆时,所获得的利润最大,最大利润为8万元21.(本题满分12分)

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论