山西省吕梁市兴县瓦塘镇裴家川口村中学2022年高一数学文模拟试题含解析_第1页
山西省吕梁市兴县瓦塘镇裴家川口村中学2022年高一数学文模拟试题含解析_第2页
山西省吕梁市兴县瓦塘镇裴家川口村中学2022年高一数学文模拟试题含解析_第3页
山西省吕梁市兴县瓦塘镇裴家川口村中学2022年高一数学文模拟试题含解析_第4页
免费预览已结束,剩余1页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

山西省吕梁市兴县瓦塘镇裴家川口村中学2022年高一数学文模拟试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.已知集合,,则

A.

B.

C.

D.

参考答案:B2.将函数的图象上所有点向左平移个单位,再将所得的图象的所有点的横坐标伸长到原来的2倍(纵坐标不变),得到的图象对应的解析式是(

)A.

B.

C.

D.参考答案:A由题意,将函数的图象上所有点向左平移个单位,得到,将得到的图象的所有点的横坐标伸长到原来的2倍(纵坐标不变),得到.故答案为A.

3.设则下列结论正确的是(

A.

B.

C.

D.参考答案:C略4.某学校有教职员工150人,其中高级职称15人,中级职称45人,一般职员90人,现在用分层抽样抽取30人,则样本中各职称人数分别为(

)A.5,10,15 B.3,9,18 C.3,10,17 D.5,9,16参考答案:B5.在如图所示的“茎叶图”表示的数据中,众数和中位数分别

).A.23与26B.31与26C.24与30D.26与30参考答案:

B6.若l,m是两条不同的直线,α是一个平面,则下列命题正确的是()A.若l∥α,m∥α,则l∥m B.若l⊥m,m?α,则l⊥αC.若l∥α,m?α,则l∥m D.若l⊥α,l∥m,则m⊥α参考答案:D【考点】空间中直线与平面之间的位置关系;空间中直线与直线之间的位置关系.【分析】A.若l∥α,m∥α,则l∥m或相交或为异面直线,即可判断出真假;B.若l⊥m,m?α,则l与α相交或平行,即可判断出真假;C.若l∥α,m?α,则l∥m或为异面直线,即可判断出真假;D.由线面垂直的性质定理与判定定理可得正确.【解答】解:A.若l∥α,m∥α,则l∥m或相交或为异面直线,因此不正确;B.若l⊥m,m?α,则l与α相交或平行,因此不正确;C.若l∥α,m?α,则l∥m或为异面直线,因此不正确;D.若l⊥α,l∥m,则由线面垂直的性质定理与判定定理可得:m⊥α,正确.故选:D.【点评】本题考查了空间线面面面位置关系的判定及其性质定理,考查了推理能力与计算能力,属于中档题.7.对一个容量为的总体抽取容量为的样本,当选取简单随机抽样、系统抽样和分层抽样三种不同方法抽取样本时,总体中每个个体被抽中的概率依次为,,,则().A. B. C. D.参考答案:D无论三种中哪一抽法都要求个体被抽概率相同.选.8.正方体-中,与平面ABCD所成角的余弦值为(

)A.

B.

C.

D.参考答案:B9.已知圆和两点,.若圆C上存在点P,使得,则m的最大值为()A.8 B.7 C.6 D.5参考答案:B【分析】由求出点P的轨迹是一个圆,根据两圆有公共点可得出的最大值.【详解】解:设因为,所以点P在以线段为直径的圆上,记该圆为圆,即此时点P的方程为,又因为点在圆上,故圆与圆有公共点,故得到,解得:,故,故选B.【点睛】本题考查了轨迹思想,考查了两圆的位置关系,解题的关键是将条件转化为轨迹方程,从而解决问题.10.的值为

A.

B.

C.

D.参考答案:B略二、填空题:本大题共7小题,每小题4分,共28分11.已知数列的通项公式为,则此数列的前项和取最小时,=

.参考答案:.11或12略12.右图给出的计算的值的一个程序框图,其中判断框内应填入的条件是

参考答案:13.函数(常数且)图象恒过定点P,则点P的坐标为

.参考答案:14.如果函数的定义域为R,那么实数a的取值范围是___▲___.参考答案:[0,4)对于恒成立,当时,恒成立;当时,,综上.

15.已知函数是定义在上的奇函数,且当时,,则当时,的表达为.参考答案:16.372和684的最大公约数是

参考答案:1217.将边长为2,锐角为60°的菱形ABCD沿较短对角线BD折成四面体ABCD,点E,F,G分另AC,BD,BC的中点,则下列命题中正确的是.(将正确的命题序号全填上)①EF∥AB;②EF是异面直线AC与BD的公垂线;③CD∥平面EFG;④AC垂直于截面BDE.参考答案:②③④【考点】L3:棱锥的结构特征.【分析】根据中位线定理和空间线面位置的判定与性质判断.【解答】解:设AD的中点为M,连接FM,则AB∥FM,∵FM与EF相交,∴EF与AB为异面直线,故①错误;由△ABC≌△ADC可得BE=DE,∴EF⊥BD,同理可得EF⊥AC,∴EF是异面直线AC与BD的公垂线,故②正确;由中位线定理可得FG∥CD,∴CD∥平面EFG,故③正确;∵AB=BC,∴BE⊥AC,同理可得:DE⊥AC,∴AC⊥平面BDE.故④正确.故答案为:②③④.三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.(10分)已知函数是上的奇函数,且(1)求的值(2)若,,求的值(3)若关于的不等式在上恒成立,求的取值范围参考答案:19.已知集合.(1)若,求;(2)若,求a的取值范围.参考答案:(1),(2)

得20.已知函数.(1)化简;(2)若,且,求的值.参考答案:解:(1).(2),∵,所以,可得.又,,所以.所以.

21.某公司生产一种电子仪器的固定成本为20000元,每生产一台仪器需增加投入100元,已知总收益满足函数:R(x)=,其中x是仪器的月产量.(注:总收益=总成本+利润)(1)将利润x表示为月产量x的函数;(2)当月产量为何值时,公司所获利润最大?最大利润为多少元?参考答案:【考点】函数模型的选择与应用.【专题】函数的性质及应用.【分析】(1)根据利润=收益﹣成本,由已知分两段当0≤x≤400时,和当x>400时,求出利润函数的解析式;(2)根据分段函数的表达式,分别求出函数的最大值即可得到结论.【解答】解:(1)由于月产量为x台,则总成本为20000+100x,从而利润f(x)=;(2)当0≤x≤400时,f(x)=300x﹣﹣20000=﹣(x﹣300)2+25000,∴当x=300时,有最大值25000;当x>400时,f(x)=60000﹣100x是减函数,∴f(x)=60000﹣100×400<25000.∴当x=300时,有最大值25000,即当月产量为

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论