下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
山西省临汾市侯马高村乡中学2022年高二数学文月考试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.已知函数,若互不相等,且
,则的取值范围是(
)(A)
(B)
(C)
(D)参考答案:C2.数列{an}中,a1,a2-a1,a3-a2,…,an-an-1…是首项为1、公比为的等比数列,则an等于()A.(1-) B.(1-)C.(1-) D.(1-)参考答案:A略3.若执行如图所示的程序框图,则输出S的值为(
)A. B. C. D.参考答案:C【分析】首先确定流程图的功能为计数的值,然后利用裂项求和的方法即可求得最终结果.【详解】由题意结合流程图可知流程图输出结果为,,.本题选择C选项.【点睛】识别、运行程序框图和完善程序框图的思路:(1)要明确程序框图的顺序结构、条件结构和循环结构.(2)要识别、运行程序框图,理解框图所解决的实际问题.(3)按照题目的要求完成解答并验证.
4.已知集合,=,则(
)A.
B.(2,3)
C.
D.(1,2)参考答案:C5.已知圆与圆,则圆与圆的位置关系为(
). A.相交 B.内切 C.外切 D.相离参考答案:C圆的圆心为,半径为,圆的圆心为,半径为,∴两圆的圆心距,∴,∴两圆外切,故选.6.下列推理过程属于演绎推理的为()A.老鼠、猴子与人在身体结构上有相似之处,某医药先在猴子身上试验,试验成功后再用于人体试验B.由1=12,1+3=22,1+3+5=32,…得出1+3+5+…+(2n﹣1)=n2C.由三角形的三条中线交于一点联想到四面体四条中线(四面体每一个顶点与对面重心的连线)交于一点D.通项公式形如an=cqn(cq≠0)的数列{an}为等比数列,则数列{﹣2n}为等比数列参考答案:D【考点】F7:进行简单的演绎推理.【分析】根据类比推理的定义及特征,可以判断出A,C为类比推理,根据归纳推理的定义及特征,可以判断出B为归纳推理,根据演绎推理的定义及特征,可以判断出D为演绎推理.【解答】解:∵老鼠、猴子与人在身体结构上有相似之处,故A中推理为类比推理;∵由1=12,1+3=22,1+3+5=32,…得出1+3+5+…+(2n﹣1)=n2,是由特殊到一般故B中推理为归纳推理;∵由三角形性质得到四面体的性质有相似之处,故C中推理为类比推理;∵由通项公式形如an=cqn(cq≠0)的数列{an}为等比数列(大前提),数列{﹣2n}满足这种形式(小前提),则数列{﹣2n}为等比数列(结论)可得D中推理为演绎推理.7.若正三棱锥的侧面都是直角三角形,则它的侧棱与底面所成角的余弦值为()A. B. C. D.参考答案:A【考点】直线与平面所成的角.【分析】根据所给的正三棱锥的特点,根据三垂线定理做出二面角的平面角,在直角三角形中做出要用的两条边的长度,根据三角函数的定义得到角的余弦值即可.【解答】解:正三棱锥P﹣ABC的侧棱两两垂直,过P做地面的垂线PO,在面ABC上,做BC的垂线AD,AO为PA在底面的射影,则∠PAO就是PA与底面ABC所成角,设侧棱长是1,在等腰直角三角形PBC中BC=,PD=,AD=,PA与底面ABC所成角的余弦值为:==.故选:A.8.把复数z的共轭复数记作,已知(3﹣4i)=1+2i,则z=()A.+i B.﹣+i C.﹣﹣i D.﹣参考答案:C【考点】复数代数形式的乘除运算.【分析】把已知等式变形,然后利用复数代数形式的乘除运算化简,求得,则z可求.【解答】解:∵,∴.故选:C.9.已知定点,点P为抛物线上一动点,点P到直线的距离为,则|PA|+d的最小值为(
)A.4
B.
C.6 D.参考答案:B10.已知圆O的半径为2,PA、PB为圆O的两条切线,A、B为切点(A与B不重合),则的最小值为()A.﹣12+4 B.﹣16+4 C.﹣12+8 D.﹣16+8参考答案:C【考点】向量在几何中的应用.【分析】利用圆切线的性质:与圆心切点连线垂直;设出一个角,通过解直角三角形求出PA,PB的长;利用向量的数量积公式表示出;利用三角函数的二倍角公式化简函数,通过换元,再利用基本不等式求出最值.【解答】解:设PA与PO的夹角为α,则|PA|=|PB|=,y=?=||||cos2α=?cos2α=?cos2α=4记cos2α=μ.则y=4=4[(﹣μ﹣2)+]=﹣12+4(1﹣μ)+≥﹣12+8.当且仅当μ=1﹣时,y取得最小值:8.即?的最小值为8﹣12.故选:C.二、填空题:本大题共7小题,每小题4分,共28分11.已知命题p:?x∈R,x2>x﹣1,则?p为.参考答案:?x∈R,x2≤x﹣1略12.若都是正实数,且,则的最小值是。参考答案:
13.已知,记,则
(用表示).参考答案:略14.、如图,用6种不同的颜色给图中的4个格子涂色,每个格子涂一种颜色,要求相邻的两个格子颜色不同,且两端的格子的颜色也不同,则不同的涂色方法共有__________种(用数字作答).参考答案:630略15.从1,2,3,4这四个数中一次随机地取两个数,则其中一个数是另一个数的两倍的概率是________.参考答案:16.抛物线的准线方程为
参考答案:17.已知复数z=3﹣i(i是虚数单位),则的值为
.参考答案:
三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.如图,在底面是直角梯形的四棱锥S-ABCD中,,面,(1)求四棱锥S-ABCD的体积;(2)求证:面面;(3)求SC与底面ABCD所成角的正切值。
参考答案:(1)解:
(2)证明:
又
(3)解:连结AC,则就是SC与底面ABCD所成的角。
在三角形SCA中,SA=1,AC=,
19.已知函数f(x)=ax3+x2(a∈R)在x=﹣处取得极值.(1)确定a的值;(2)若gx)=f(x)ex,求g(x)的单调区间.参考答案:【考点】6D:利用导数研究函数的极值;6B:利用导数研究函数的单调性.【分析】(1)求导数,利用f(x)=ax3+x2(a∈R)在x=﹣处取得极值,可得f′(﹣)=0,即可确定a的值;(2)由(1)得g(x)=(x3+x2)ex,利用导数的正负可得g(x)的单调性.【解答】解:(1)对f(x)求导得f′(x)=3ax2+2x.∵f(x)=ax3+x2(a∈R)在x=﹣处取得极值,∴f′(﹣)=0,∴3a?+2?(﹣)=0,∴a=;(2)由(2)得g(x)=(x3+x2)ex,∴g′(x)=(x2+2x)ex+(x3+x2)ex=x(x+1)(x+4)ex,令g′(x)=0,解得x=0,x=﹣1或x=﹣4,当x<﹣4时,g′(x)<0,故g(x)为减函数;当﹣4<x<﹣1时,g′(x)>0,故g(x)为增函数;当﹣1<x<0时,g′(x)<0,故g(x)为减函数;当x>0时,g′(x)>0,故g(x)为增函数;综上知g(x)在(﹣∞,﹣4)和(﹣1,0)内为减函数,在(﹣4,﹣1)和(0,+∞)内为增函数.20.已知椭圆C:+=1(a>b>0)的左、右焦点分别为F1,F2,过F2的直线l交椭圆于A,B两点,△ABF1的周长为8,且△AF1F2的面积的最大时,△AF1F2为正三角形.(1)求椭圆C的方程;(2)若是椭圆C经过原点的弦,MN∥AB,求证:为定值.参考答案:【考点】KL:直线与椭圆的位置关系;K3:椭圆的标准方程.【分析】(1)运用椭圆的定义,可得4a=8,解得a=2,再由椭圆的对称性可得a=2c,求得b,进而得到椭圆方程;(2)讨论直线l的斜率不存在,求得方程和AB,MN的长,即可得到所求值;讨论直线l的斜率存在,设为y=k(x﹣1),联立椭圆方程,运用韦达定理和弦长公式,设MN的方程为y=kx,代入椭圆方程,求得MN的长,即可得到所求定值.【解答】解:(1)由已知A,B在椭圆上,可得|AF1|+|AF2|=|BF1|=|BF2|=2a,又△ABF1的周长为8,所以|AF1|+|AF2|+|BF1|=|BF2|=4a=8,即a=2,由椭圆的对称性可得,△AF1F2为正三角形当且仅当A为椭圆短轴顶点,则a=2c,即c=1,b2=a2﹣c2=3,则椭圆C的方程为+=1;(2)证明:若直线l的斜率不存在,即l:x=1,求得|AB|=3,|MN|=2,可得=4;若直线l的斜率存在,设直线l:y=k(x﹣1),设A(x1,y1),B(x2,y2),C(x3,y3),D(x4,y4),代入椭圆方程+=1,可得(3+4k2)x2﹣8k2x+4k2﹣12=0,有x1+x2=,x1x2=,|AB|=?=,由y=kx代入椭圆方程,可得x=±,|MN|=2?=4,即有=4.综上可得为定值4.21.如图,四棱锥满足面,.,.(Ⅰ)求证:面面.(Ⅱ)求证:面.参考答案:见解析(
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五年度公积金贷款购房合同标准解读3篇
- 二零二五版企业间借款合同范本9篇
- 二零二五年度防盗门安全认证及销售合同2篇
- 二零二五年度车辆保险居间代理合同(含优惠方案)3篇
- 二零二五版特色果树种植基地承包经营合同3篇
- 影视作品评价与奖项申报2025年度合同3篇
- 二零二五年绿色节能LED广告租赁合同3篇
- 深圳市2025年度人才住房装修补助购房合同3篇
- 二零二五版汽车抵押贷款车辆残值评估合同3篇
- 二零二五年度金融产品发行与销售合同3篇
- 软件项目应急措施及方案
- 2025河北邯郸经开国控资产运营管理限公司招聘专业技术人才5名高频重点提升(共500题)附带答案详解
- 2024年民法典知识竞赛考试题库及答案(共50题)
- 2025老年公寓合同管理制度
- 2024-2025学年人教版数学六年级上册 期末综合卷(含答案)
- 钣金设备操作培训
- 感染性腹泻的护理查房
- 中考英语688高频词大纲词频表
- 九年级初三中考物理综合复习测试卷3套(含答案)
- 管理制度评价表(填写模板)
- 工地设计代表服务记录
评论
0/150
提交评论