下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
山东省青岛市胶州第十四中学高二数学理模拟试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.若双曲线的焦距为8,则C的离心率为(
)A. B. C.2 D.参考答案:A【分析】先由双曲线的焦距为8,求出,进而可求出结果.【详解】因为双曲线的焦距为8,所以,解得;因此的离心率为.故选A【点睛】本题主要考查求双曲线的离心率,熟记双曲线的简单性质即可,属于常考题型.2.算法的有穷性是指(
)A.算法必须包含输出
B.算法中每个操作步骤都是可执行的C.算法的步骤必须有限
D.以上说法均不正确参考答案:C3.若等差数列{}的前5项和=25,且=3,则=
(
)A.12
B.13
C.14
D.15参考答案:B4.函数的定义域为(A)
(B)
(C)
(D)参考答案:D5.下列函数中,既是偶函数又在单调递增的是(
)A.y=
B.
C.y=
D.y=ln
参考答案:D6.有下列一列数:,1,1,1,(),,,,,…,按照规律,括号中的数应为()A. B. C. D.参考答案:B【考点】82:数列的函数特性.【分析】由题意可得:分子为连续的奇数,分母为连续的质数,即可得出.【解答】解:,,,,(),,,,,…,由题意可得:分子为连续的奇数,分母为连续的质数,故括号中的数应该为,故选:B7.在3和9之间插入两个正数,使前3个数成等比数列,后3个数成等差数列,则这两个正数之和为(
)A.
B.
C.
D.参考答案:A8.设=
(A)
(B)
(C)
(D)参考答案:C9.某程序框图如图所示,若输出的S=57,则判断框内为()A.k>4? B.k>5? C.k>6? D.k>7?参考答案:A【考点】程序框图.【分析】分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是累加并输入S的值,条件框内的语句是决定是否结束循环,模拟执行程序即可得到答案.【解答】解:程序在运行过程中各变量值变化如下表:K
S
是否继续循环循环前1
1/第一圈2
4
是第二圈3
11
是第三圈4
26
是第四圈5
57
否故退出循环的条件应为k>4故答案选A.10.方程的实根个数是(
)A.3 B.2 C.1 D.0参考答案:C解;由由x3-6x2+9x-10=0得,x3=6x2-9x+10,画图,由图得一个交点.故选C二、填空题:本大题共7小题,每小题4分,共28分11.复数的共轭复数在复平面上的对应点在第一象限内,则实数的取范围是
。参考答案:略12.已知函数,则函数的图象在点处的切线方程是_____________.参考答案:略13.在极坐标系中,圆心为且过极点的圆的极坐标方程为__________.参考答案:由题意可得圆心的直角坐标为,半径为,所以圆的直角坐标方程为,化为极坐标为.14.根据题意,完成流程图(如图):输入两个数,输出这两个数之差的绝对值,则①处应填
参考答案:15.在平面直线坐标系中,椭圆的中心为原点,焦点在轴上,离心率为,过的直线交C于A,B两点,且的周长为16,那么椭圆C的方程为
。参考答案:略16.用一个与球心距离为1的平面去截球,所得的截面面积为π,则该球的体积为
.参考答案:略17.某校早上8:00开始上课,假设该校学生小张与小王在早上7:30~7:50之间到校,且每人在该时间段的任何时刻到校是等可能的,则小张比小王至少早5分钟到校的概率为
(用数字作答).参考答案:【考点】几何概型.【专题】概率与统计.【分析】设小张到校的时间为x,小王到校的时间为y.(x,y)可以看成平面中的点试验的全部结果所构成的区域为Ω={(x,y|30≤x≤50,30≤y≤50}是一个矩形区域,则小张比小王至少早5分钟到校事件A={(x,y)|y﹣x≥5}作出符合题意的图象,由图根据几何概率模型的规则求解即可.【解答】解:设小张到校的时间为x,小王到校的时间为y.(x,y)可以看成平面中的点试验的全部结果所构成的区域为Ω={(x,y|30≤x≤50,30≤y≤50}是一个矩形区域,对应的面积S=20×20=400,则小张比小王至少早5分钟到校事件A={x|y﹣x≥5}作出符合题意的图象,则符合题意的区域为△ABC,联立得C(45,50),联立得B(30,35),则S△ABC=×15×15,由几何概率模型可知小张比小王至少早5分钟到校的概率为=,故答案为:.【点评】本题考查几何概率模型与模拟方法估计概率,求解的关键是掌握两种求概率的方法的定义及规则,求出对应区域的面积是解决本题的关键.三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.某车间20名工人年龄数据如下表:年龄(岁)工人数(人)191283293305314323401合计20(1)求这20名工人年龄的众数与极差;(2)以十位数为茎,个位数为叶,作出这20名工人年龄的茎叶图;(3)求这20名工人年龄的方差.参考答案:【考点】极差、方差与标准差;茎叶图;众数、中位数、平均数.【专题】概率与统计.【分析】(1)根据众数和极差的定义,即可得出;(2)根据画茎叶图的步骤,画图即可;(3)利用方差的计算公式,代入数据,计算即可.【解答】解:(1)这这20名工人年龄的众数为30,极差为40﹣19=21;
(2)茎叶图如下:
(3)年龄的平均数为:=30.这20名工人年龄的方差为S2=[(19﹣30)2+3×(28﹣30)2+3×(29﹣30)2+5×(30﹣30)2+4×(31﹣30)2+3×(32﹣30)2+(40﹣30)2]=12.6.【点评】本题考查了众数,极差,茎叶图,方差的基本定义,属于基础题.19.(本小题满分12分)相关部门对跳水运动员进行达标定级考核,动作自选,并规定完成动作成绩在八分及以上的定为达标,成绩在九分及以上的定为一级运动员.已知参加此次考核的共有56名运动员.(1)考核结束后,从参加考核的运动员中随机抽取了8人,发现这8人中有2人没有达标,有3人为一级运动员,据此请估计此次考核的达标率及被定为一级运动员的人数;(2)经过考核,决定从其中的A、B、C、D、E五名一级运动员中任选2名参加跳水比赛(这五位运动员每位被选中的可能性相同).写出所有可能情况,并求运动员E被选中的概率.参考答案:(Ⅰ)依题意,估计此次考核的达标率为一级运动员约有(人)
(Ⅱ)依题意,从这五人中选2人的基本事件有:(A、B)(A、C)(A、D)(A、E)
(B、C)(B、D)(B、E)(C、D)(C、E)(D、E),共10个
其中“E被选中”包含:(A、E)(B、E)(C、E)(D、E)4个基本事件,因此所求概率
20.从8名运动员中选4人参加4×100米接力赛,在下列条件下,各有多少种不同的排法?(用数字结尾)(1)甲、乙两人必须跑中间两棒;(2)若甲、乙两人只有一人被选且不能跑中间两棒;(3)若甲、乙两人都被选且必须跑相邻两棒.参考答案:解:(1)
(2)
(3)略21.已知开口向上的二次函数f(x),对任意,恒有成立,设向量a=,b=(1,2)。求不等式f(a·b)<f(5)的解集。参考答案:由题意知f(x)在上是增函数,
a·b=
f(a·b)<f(5)
a·b<5(*)①当时,不等式(*)可化为,此时x无解;②当时,不等式(*)可化为
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度原材料采购与价格调整合同
- 2024年度润滑油品长距离输送合同
- 2024年度林业资源开发租赁合同
- 2024年度争议解决与不锈钢加工定制合同
- 2024年度广告投放与效果评估合同
- 2024年度物业管理合同协议与物业管理合同范本
- 2024年度旅游服务合同(标的旅游服务)
- 2024年度代理合同:国际货物代理协议
- 2024年度智能仓储物流系统租赁合同
- 2024年度建筑材料供货及安装合同
- (完整版)汉密尔顿焦虑量表(HAMA)
- 汽车零部件编号规则
- 低年级语文答辩67题汇总
- 苏教版数学二年级上册《认识线段》PPT课件(区优质课)
- SAP HANA 定制化平台(TDI)方案
- 三年级数学上册苏教版《认识长方形正方形》教学设计及活动单(市级公开课)
- 非饱和土力学培训06本构理论
- 2022版《语文课程标准》
- 破窗效应(课堂PPT)课件
- 【公开课教案】小学综合实践活动《创建自己的”阅读银行“》“阅读存折”设计
- 液化石油气站安全隐患检查记录表
评论
0/150
提交评论