版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
研究生SAS应用讲义肖枝洪2/4/20231
StatisticalAnalysisSystem
简称为SAS,可用来分析数据和编写报告.它是美国SAS研究所的产品,在国际上被誉为标准软件,在我国深受医学、农林、财经、社会科学、行政管理等众多领域的专业工作者的好评。有关SAS的最新信息,可以查看http://。
SAS采用积木式模块结构,其中的SAS/STAT模块是目前功能最强的多元统计分析程序集,可以做回归分析、聚类分析、判别分析、主成分分析、因子分析、典型相关分析(下学期介绍)以及各种试验设计的方差分析和协方差分析。本讲义围绕SAS的应用,讲述以下六部分内容:
(1)SAS应用基础;
(2)SAS常用语句;
(3)SAS服务过程;
(4)描述性统计程式;
(5)方差分析程式;
(6)回归分析程式;2/4/20232SAS的显示管理系统启动计算机,点击SAS图标后,即可进入SAS的显示管理系统.在View中有四个主要的窗口(其他的先不考虑):
(1)编辑窗口(programeditor):编辑程式和数据文件;(2)日志窗口(log):记录运行情况,显示error信息;(3)输出窗口(output):输出运行的结果;(4)图形窗口(graph):输出图形.点击View菜单中的Programeditor、Log、Output、Graph命令可以进入编辑、日志、输出及图形窗口.按功能键F5、F6、F7也可以进入编辑、日志及输出窗口.退出SAS有两种方法:
(1)点击File菜单中的Exit命令;
(2)点击窗口右上角的×。2/4/20233概率统计及SAS应用教材中的程序应用SAS计算二项分布的概率,请注意SAS中
probbnml(p,n,k)=P(Xk)=因此,当n=5,k=3,p=0.2时,应用SAS直接计算P{X=3}的程序为:dataprobnml;p=probbnml(0.2,5,3)-probbnml(0.2,5,2);procprint;run;输出的结果为:0.0512。2/4/20234当n=5,k=4,p=0.8时,应用SAS直接计算P(X=4)+P(x=5)的程序为:
dataex;p=1-probbnml(0.8,5,3);procprint;run;输出的结果为:0.73728。应用SAS直接计算例1.3.1中所求概率的P{8≤X≤12}的程序为:
dataex;p=probbnml(0.5,20,12)-probbnml(0.5,20,7);procprint;run;输出的结果为:0.7368240356。2/4/20235应用SAS中的probnorm(x)近似计算二项分布的概率时,请注意
probnorm(x)=
因此,应用SAS近似计算P{8≤X≤12}的程序为:
dataex;p=probnorm(1.12)-probnorm(-1.12);procprint;run;输出的结果为:0.73729.其中
1.12=(12+0.5-10)/sqrt(5)-1.12=(8-0.5-10)/sqrt(5)2/4/202362.
在SAS中有probnorm(x)函数,用此函数可以求
P{X≤x}.当x=1.645,1.96,2.576时,不查标准正态分布的分布函数的函数值表,应用SAS直接计算P{X≤x}的程序为dataex;dox=1.645,1.96,2.576;(给x依次赋值,增加赋值后可全部列出的函数值表)p=probnorm(x);putxp;(计算并输出x对应的概率)end;run;输出的结果如下(在Log窗口中显示):
1.6450.95001509451.960.97500210492.5760.99500246772/4/20237
用下列程序更好:dataex;inputx@@;p=probnorm(x);list;cards;1.6451.962.576;procprint;run;输出的结果如下(在Log窗口中显示):
1.6450.95001509451.960.97500210492.5760.99500246772/4/20238以下是用SAS程序绘制的二维正态分布分布密度函数的示意图。所用的SAS程序为:dataex;dox=-3to3by0.25;doy=-3to3by0.25;p=exp(-((x*x+y*y)*5/4+x*y*3/2)/2)/2/3.1416;output;end;end;procg3d;ploty*x=p;run;2/4/202392/4/2023103.应用SAS计算标准正态分布的分位数在SAS中有probit(p)函数,用此函数可以求p分位数.SAS程序为dataex;dop=0.025,0.05,0.1,0.9,0.95,0.975;u=probit(p);putup@;end;run;输出的结果如下:
-1.9599639850.025-1.6448536270.05-1.2815515660.11.28155156550.91.6448536270.951.95996398450.9752/4/202311
用下列程序更好:dataex;inputp@@;u=probit(p);list;cards;0.0250.050.975;procprint;run;输出的结果如下:
-1.9599639850.025-1.6448536270.05-1.2815515660.11.28155156550.91.6448536270.951.95996398450.9752/4/202312当α=0.10,0.05,0.01时,应用SAS计算双侧分位数的程序为:dataex;dox=0.1,0.05,0.01;p=1-x/2;u=probit(p);putxpu;end;run;输出的结果如下:
0.10.951.6448536270.050.9751.95996398450.010.9952.57582930352/4/2023134.应用SAS计算卡方分布的分位数在SAS中有cinv(p,df)函数,用此函数可以求p分位数.SAS程序为dataex;dodf=4;dop=0.025,0.05,0.1,0.9,0.95,0.975;c=cinv(p,df);putpdfc;end;end;run;输出的结果如下:
0.02540.48441855710.0540.71072302140.141.06362321680.947.77944033970.9549.48772903680.975411.1432867822/4/202314用下列程序更好:dataex;inputpdf@@;c=cinv(p,df);list;cards;0.02540.0540.140.940.9540.9754;procprint;run;输出的结果如下:
0.02540.48441855710.0540.71072302140.141.06362321680.947.77944033970.9549.48772903680.975411.1432867822/4/2023155.应用SAS计算t分布的分位数在SAS中有tinv(p,df)函数,用此函数可以求p分位数.SAS程序为dataex;dodf=4;dop=0.025,0.05,0.1,0.9,0.95,0.975;t=tinv(p,df);putpdft;end;end;run;输出的结果如下:
0.0254-2.7764451050.054-2.1318467860.14-1.5332062740.941.53320627410.954297542.77644510522/4/2023166.应用SAS计算F分布的分位数在SAS中有finv(p,df1,df2)函数,用此函数可以求p分位数.SAS程序为dataex;dop=0.025,0.05,0.1,0.9,0.95,0.975;dodf1=3;df2=4;f=finv(p,df1,df2);putpdf1df2f;end;end;run;输出的结果如下:
0.025340.06622087250.05340.10968301080.13409344.19086043890.95346.59138211640.975349.97919853222/4/202317还可以用下列程序更好:dataex;inputpdf1df2@@;
f=finv(p,df1,df2);list;cards;0.025340.05340.1340.9340.95340.97534;procprint;run;2/4/202318dataprobdist;inputabc@@;probbnml01=probbnml(a,b,c);probchi01=probchi(c,b);probf01=probf(a,b,c);probit01=probit(a);probnorm01=probnorm(a);probt01=probt(a,b);list;cards;0.1
4
3
0.3
5
4
0.4
6
5
0.6
6
4
0.9
8
3;procprint;run;2/4/202319一般计算data
xzh;a=12+13;b=13-12*2;c=sqrt(19**3);d=18**(1/3);e=log10(1000);g=sin(3);/*f=arcsin(1)lack*/x=12.4221/84.7599;cv=0.20077/2.55;proc
print;
2/4/202320矩阵计算dataxzhmatrix;prociml;x={12345,24789,37101520,48153020,59202040};
g=inv(x);x2=x*x;e=eigval(x);d=eigvec(x);f=trace(x);h=det(x);J=t(x);printxx2;printdgehf;printJ;run;2/4/202321应用SAS画频率和累计频率直方图datahist01;inputx@@;cards;4546485151576264;proc
gchart;vbarx/type=pctspace=0;run;2/4/202322datahist01;inputx@@;cards;70729424685790959310964587940118847099132154100773468264887859512310510755457310958101134949462156618477123135401077913172663044141981009078445058607678921016215297815498751181309011513610080699884251799776567343826068160139;proc
gchart;vbar
x/type=cpctspace=0;run;2/4/2023232/4/202324应用SAS做样本观测值的描述性统计分析dataex;inputx@@;cards;4546485151576264;procunivariate;run;输出的结果如下:7.211103=sqrt(364/7)Variable=XMomentsN8SumWgts8Mean53Sum424StdDev7.211103Variance52Skewness0.572987Kurtosis-1.2721USS22836CSS364CV13.60585StdMean2.549512/4/202325Quantiles(Def=5)分位数100%Max6499%6475%Q359.595%6450%Med5190%6425%Q14710%450%Min455%45Q3-Q112.51%45Range19Mode512/4/202326
应用SAS作例2.1.2中样本观测值经过整理后的描述性统计的程序为:dataex;inputxf@@;cards;25650207529100261251115061752;procunivariate;var
x;freq
f;run;2/4/202327应用SAS作例2.1.3中样本观测值的描述性统计的程序:dataxzh;inputxy@@;cards;
1.581809.98289.4225
1.251170.31652.41175
11.01401.851606.041205.9280;proccorr
cov
vaardf=n;run;2/4/202328输出的结果如下:CovarianceMatrixDF=10XYX14.685864-207.220000Y-207.2200003453.800000PearsonCorrelationCoefficients
/Prob>|R|underHo:Rho=0/N=10XYX1.00000-0.920100.00.0002Y-0.920101.000000.00020.02/4/2023292.3.8应用SAS求置信区间(1)求一个正态总体均值的置信区间SAS程序为dataex;inputx@@;cards;5.85.5;procmeansmeanstdclm;procmeansmeanstdclmalpha=0.1;run;输出的结果如下:MeanStdDevLower95.0%CLMUpper95.0%CLM5.58000.72249574.68290316.4770969MeanStdDevLower90.0%CLMUpper90.0%CLM5.58000.72249574.89117926.26882082/4/202330(2)求两个正态总体均值差的置信区间SAS程序为:dataex;doa=1to2;inputn@@;doi=1ton;inputx@@;output;end;end;cards;62.12.352.392.412.442.5642.032.282.582.71;procanova;class
a;modelx=a;meansa/lsd
cldiff;meansa/lsd
cldiffalpha=0.1;run;2/4/202331输出的结果如下:Alpha=0.05Confidence=0.95df=8MSE=0.049494CriticalValueofT=2.30600LowerDifferenceUpperConfidenceBetweenConfidenceLimitMeansLimit-0.35615-0.025000.30615Alpha=0.1Confidence=0.9df=8MSE=0.049494CriticalValueofT=1.85955LowerDifferenceUpperConfidenceBetweenConfidenceLimitMeansLimit-0.29204-0.025000.242042/4/202332
应用SAS作总体分布参数的假设检验
(1)一个正态总体均值作假设检验的SAS程序
dataex;inputx@@;y=x-1277;cards;12501265124512601275;procmeansmeanstdtprt;var
y;run;程序运行的结果为:AnalysisVariable:Y
MeanStdDevTProb>|T|-18.200000011.9373364-3.37170890.0280结果中的Prob>|T|为服从t分布的随机变量X的绝对值>|T|的概率,即P{|X|>|T|}.2/4/202333
(2)两个正态总体均值作假设检验的SAS程序
dataxzh;doa=1to2;doi=1to5;inputx@@;output;end;end;cards;800840870920850900880890890840;procttest
cochran;class
a;varx;procprint;run;程序运行的结果为:TTESTPROCEDUREVariable:XANMeanStdDevStdError15856.00000043.9317652719.6468827025880.00000023.4520788010.488088482/4/202334
VariancesTMethod
DFProb>|T|Unequal-1.0770Satterthwaite
6.10.3220
Cochran4.00.3419Equal-1.07768.00.3126ForH0:Variancesareequal,F'=3.51DF=(4,4)Prob>F'=0.2515结果中的Variances对应两个选项:如果认为方差相等,则DF=8,Prob>|T|为0.3126;如果认为方差不相等,则根据Satterthwaite检验法或Cochran和Cox检验法作近似的t检验.两种检验法的统计量都是2/4/202335Satterthwaite检验法的结果是DF=6.1,
Prob>|T|为0.3220;其中DF的公式:Cochran和Cox检验法DF=4.0,Prob>|T|为0.3419;其临界值2/4/202336(3)配对样本均值作假设检验的SAS程序dataxzh;inputx1x2@@;d=x1-x2;cards;114941171141551251149811912110295140104919513510611492;procmeanstprt;var
d;proc
print;run;程序运行的结果为:AnalysisVariable:DTProb>|T|3.52032100.00652/4/202337
应用SAS作正态性检验SAS程序为dataex;inputx@@;cards;711666795106310;procunivariate
normal;run;程序运行的结果为Skewness0.157068Kurtosis-0.58894W:Normal0.932615Pr<W0.3827W检验的临界值w0.05=0.859,
P{W<w0.05=0.859}=0.05
SAS结果表明P{W<0.932615}=0.3827>0.05,因此接受H。.2/4/202338
应用SAS作单因素试验方差分析
(1)不等重复的情形:
dataex;doa=1to3;inputn@@;doi=1ton;inputx@@;Output;end;end;cards;8
212924222530272610202525232931242620216242228252126;procanova;class
a;modelx=a;run;2/4/202339DependentVariable:xSumofSourceDFSquaresMeanSquareFValuePr>FModel26.76666673.38333330.320.7314Error21223.733333310.6539683CorrectedTotal23230.5000000如果要作多重比较并求均值差的置信区间,则增加meansa/lsd
cldiff;run;2/4/202340(2)等重复的情形:
dataex;doa=1to3;doi=1to4;inputx@@;output;end;end;cards;212427202018191522252722;procanova;class
a;modelx=a;run;2/4/202341
DependentVariable:xSumofSourceDFSquaresMeanSquareFValuePr>FModel282.666666741.33333336.000.0221Error962.00000006.8888889CorrectedTotal11144.6666667如果要作多重比较并求均值差的置信区间,则增加meansa/lsd
cldiff;run;2/4/202342应用SAS作Levene
的F检验SAS程序为:dataex;doa=1to4;doi=1to4;inputx@@;output;end;end;cards;19232113212427202018191522252722;procanova;class
a;modelx=a;meansa/hovtest;run;2/4/202343输出的结果为:Levene'sTestforEqualityofXVarianceANOVAofSquaredDeviationsfromGroupMeansSumofMeanSourceDFSquaresSquareFValuePr>FA3268.889.58331.08040.3944Error12995.082.91672/4/202344无重复试验的双因素方差分析dataanova01;doa=1to4;dob=1to5;inputx@@;output;end;end;cards;5356455249475047475357635457584552424148;procanova;classab;modelx=ab;meansab/duncanalpha=0.01;run;2/4/202345重复试验的双因素方差分析dataex;doa=1to4;dob=1to3;doi=1to2;inputx@@;output;end;end;end;cards;58.252.656.241.265.360.849.142.854.150.551.648.460.158.370.975.871.558.25148.741.4;procanova;classab;modelx=aba*b;meansab/duncan;run;2/4/202346二级系统分组试验方差分析的SAS程序:dataex;doa=1to3;dob=1to3;doi=1to5;inputx@@;
output;end;end;end;cards;
0.91.01.21.00.91.0
;
procanova;classab;modelx=ab(a);
meansab(a)/duncan;run;2/4/202347
应用SAS作一元线性回归分析dataex;inputxy@@;cards;5.72.4738.33.510.93.912.44.413.14.813.6515.32.;procgplot;ploty*x;/*以y为纵坐标,以x为横坐标*/symboli=rlv=dot;/*i=rl表示画回归直线*//*v=dot表示观测值对应的点标记为小圆点*/procreg;modely=x/cli;run;/*y=x表示以y为因变量,以x为自变量,*//*cli表示要求预测值的95%置信区间*/2/4/2023482/4/202349输出的结果如下:DependentVariable:YAnalysisofVarianceSumofMeanSourceDFSquaresSquare
FValueProb>FModel1112.48368
112.48368
387.5160.0001Error72.031880.29027CTotal8114.51562/4/202350ParameterEstimatesParameterStandardTforH0:VariableDFEstimateErrorParameter=0Prob>|T|INTERCEP10.2569470.532352630.4830.6441X12.9302800.1488552419.6850.0001Dep
VarPredictStdErrLower95%Upper95%ObsYValuePredictPredict
PredictResidual14.80004.65240.3313.15746.14740.147625.70005.53150.2944.07976.98320.168537.00007.28960.2305.90438.6749-0.289648.30009.04780.1887.698710.3969-0.7478510.900010.51290.1819.169211.85660.3871612.400011.68500.19610.329113.04100.7150713.100013.15020.23611.758914.5415-0.0502813.600014.32230.27912.887815.7568-0.7223915.300014.90830.30213.447616.36910.391710.6.11750.2714.69117.5440.2/4/202351
应用SAS作一元非线性回归
(1)线性化后作线性回归的SAS程序为
dataxzh;inputxy@@;x1=1/x;lx=log(x);ly=log(y);Cards;11.8521.3731.0240.7540.5660.4160.3180.2380.17;Procreg;modely=x1;Procreg;modelly=lx;Procreg;modelly=x;Run;2/4/202352(2)计算剩余平方和的SAS程序为
dataxzh01;inputxy@@;x1=1/x;lx=log(x);ly=log(y);
y1=0.1159+1.9291*x1;q1+(y-y1)**2;
y2=exp(0.9638-1.1292*lx);q2+(y-y2)**2;y3=exp(0.9230-0.3221*x);q3+(y-y3)**2;Cards;11.8521.3731.0240.7540.5660.4160.3180.2380.17;procprint;sum;varq1-q3;run;
2/4/202353
TheREGProcedureModel:MODEL1DependentVariable:y
AnalysisofVariance
SumofMeanSourceDFSquaresSquareFValuePr>FModel12.33605
2.3360557.860.0001Error70.282640.04038CTotal82.61869
2/4/202354
ParameterEstimates
ParameterStandardVariableDFEstimateErrortValuePr>|t|
Intercept10.115930.106031.090.3104x111.929150.253627.610.00012/4/202355应用SAS作协方差分析(一)SAS程序为:dataex;doa=1to3;doi=1to8;inputxy@@;output;end;end;cards;475458665363465149565666546144505254535364675862596261636364666944524858465450615970576458695366;procanova;class
a;modelx=a;procanova;class
a;modely=a;procglm;class
a;modely=xa/solution;lsmeans
a;run;2/4/202356输出的结果为:DependentVariable:XSourceDFSumofSquaresMeanSquareFValuePr>FModel2356.08333333178.041666676.340.0070Error21589.7500000028.08333333CTotal23945.83333333DependentVariable:YSourceDF
SumofMean
SquaresSquareFValuePr>FModel260.7500030.375000.770.4767Error21830.875039.5655CTotal23891.62502/4/202357DependentVariable:YSourceDF
SumofMean
SquaresSquareFValuePr>FModel3842.79280.93115.060.0001X1782.045782.045320.310.0001A2222.84111.4245.640.0001Error2048.832.44CTotal23891.625
AYLSMEAN162.0695475255.5124523364.29300022/4/202358应用SAS作协方差分析(二)⑴双因素试验不考虑交互作用的情形:SAS程序为dataex;doa=1to3;dob=1to5;inputxy@@;output;end;end;cards;82.85104.24123114.94102.88103.14124.572.75125.84104.06123.88103.8692.82104.9492.89;procglm;classab;modely=xab/solution;lsmeansab;run;2/4/202359
SourceDFTypeIIISSMeanSquareFValuePr>Fx10.7810.7816.430.0389a20.6050.3022.490.1526b47.121.78114.660.0016
Error70.8500.1215StandardParameterEstimateErrortValuePr>|t|Intercept1.5250.6952.190.0643x0.1740.06852.540.03892/4/202360⑵双因素试验考虑交互作用的情形
SAS程序为
dataex;doa=1to4;dob=1to2;doi=1to2;inputxy@@;output;end;end;end;cards;14.697.8113.218.8110.113.6100.312.998.518.5119.418.2114.712.899.210.789.618.2112.216.9105.312102.112.4103.816.4117.217.2117.9;procglm;classab;modely=xaba*b/solution;lsmeansab;run;2/4/202361SourceDFTypeIIISSMean
SquareFValuePr>Fx168.7268.7217.950.0039a3241.5880.52821.030.0007b10.2330.2330.060.8124a*b317.0925.6971.490.2986
StandardParameterEstimateErrortValuePr>|t|Intercept65.31912.4065.270.0012x3.1090.7344.240.00392/4/202362⑹协方差分析的结论:因素A的效应及套在A中的B(A)
矫正后有极显著的差异.二级系统分组试验的情形:SAS程序为dataex;doa=1to7;dob=1to3;doi=1to3;inputxy@@;output;end;end;end;cards;15.610516.410415.696…输入例中的数据…14.41431413012.8118;procglm;classab;modely=xab(a)/solution;lsmeansab(a);run;2/4/202363dataex;doa=1to7;dob=1to3;doi=1to3;inputxy@@;output;end;end;end;cards;15.610516.410415.69613.610915.610414.810712.06912.08512.85716.015216.014915.611615.613915.610716.813514.414915.615614.814314.89315.610614.89117.610618.88718.08814.411715.210215.612018.411820.014017.611117.615715.210516.411918.815718.016417.213522.013720.013819.214417.212715.66015.610817.613217.615016.010914.416913.214314.815814.414514.815313.613613.615413.615414.013116.412017.212115.210714.411812.87314.08714.414314.013012.8118;procanova;classab;modely=ab(a);meansab(a)/lsd;procglm;classab;modely=xab(a)/solution;lsmeansab(a);run;2/4/202364SourceDFTypeIIISSMean
SquareFValuePr>Fx12858.7072858.70715.440.0003a624066.384011.06421.67<.0001
b(a)149831.408702.2433.790.0004Error417590.63185.137
StandardParameterEstimateErrortValuePr>|t|Intercept-7.51635.949-0.210.8354x10.0376
2.5543.930.00032/4/202365
应用SAS作拟合优度检验SAS程序为
dataxzh;inputnnp@@;k+(n-np)**2/np;c=cinv(0.99,5);cards;32.9261411.232229.85250.085952.863134.841514.3444.34
;proc
print;varkc;
run;dataxzh1;x=(3-2.926)**2/2.926+(14-11.23)**2/11.23+(22-29.8)**2/29.8+
(52-50.08)**2/50.08+(59-52.86)**2/52.86
+(31-34.84)**2/34.84
+(15-14.34)**2/14.34
+(4-4.34)**2/4.34;proc
print;run;2/4/202366程序运行的结果为:
Obskc10.0018715.086320.6851215.086332.7267315.086342.8003415.086353.5135415.086363.9367815.086373.9671515.086383.9937915.0863Obs
x13.993792/4/202367应用SAS作列联表分类标志的独立性检验
SAS程序为
dataxzh01;doa=1to2;dob=1to2;inputf@@;output;end;end;cards;1585477;procfreq;weightf;tablea*b/chisq;run;2/4/202368
StatisticsforTableofabybStatisticDFValueProbChi-Square14.82210.0281
SampleSize=1812/4/202369应用SAS作列联表分类标志的独立性检验
SAS程序为
dataxzh01;doa=1to2;dob=1to3;inputf@@;output;end;end;cards;1263123647739;procfreq;weightf;tablea*b/chisq;run;2/4/202370
StatisticsforTableofabybStatisticDFValueProbChi-Square243.9532<.0001
SampleSize=3602/4/202371
3.用SAS求总体率的置信区间SAS程序为Dataxzh01;k=60;m=40;n=k+m;dop=0.01to0.499by0.0001until(p1>0.025);P1=1-probbnml(p,n,k-1);end;putkmp5.3@14p18.6@;dop=0.5to0.999by0.0001until(p2<0.025);P2=probbnml(p,n,k);end;
put@28kmp5.3@41p28.6;run;输出的结果如下:kn-kp1prob60400.4970.025
kn-kp2prob60400.6970.0248762/4/202372根据二项分布进行检验的SAS程序为
dataxzh01;inputkmp0;n=k+m;p1=1-probbnml(p0,n,k-1);p2=probbnml(p0,n,k);list;cards;681320.3;procprint;run;运行结果:Obskmp0np1p21681320.32000.124210.90405P1,p2都大于0.025,故接受H0:p=0.3.2/4/202373
应用SAS作符号检验方法1:计算与α进行比较.SAS程序为dataex;p=probbnml(0.5,11,1)+1-probbnml(0.5,11,10-1);procprint;run;程序运行的结果为:OBSP10.0117192/4/202374方法2:用UNIVARIATE过程;SAS程序为
dataex;inputx1x2@@;y=x1-x2;cards;2829192424222122222525
25262819232425232526292526;procunivariate;var
y;run;程序运行的结果为:Variable=YMomentsM(Sign)-4.5Pr>=|M|0.01172/4/202375应用SAS作中位数检验SAS程序为dataex;inputx@@;y=x-25;cards;281924212225261924232625;procunivariate;var
y;run;程序运行的结果为:Variable=YMomentsM(Sign)-2Pr>=|M|0.34382/4/202376应用SAS作秩和检验SAS程序为dataex;doa=1to2;inputn@@;doi=1ton;inputx@@;output;end;end;cards;212.612.4612.412.112.512.712.613.1;procnpar1waywilcoxon;class
a;var
x;run;程序运行的结果为:Wilcoxon2-SampleTest(NormalApproximation)(withContinuityCorrectionof.5)S=8.00000Z=-.168687Prob>|Z|=0.8660T-TestApp
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《人力资源使用》课件
- 养老院老人入住确认制度
- 养老院环境卫生与消毒制度
- 《理想的风筝课堂》课件
- 2024年民政部社会福利中心“养老服务人才培训”拟申报课件信息反馈表
- 2024年新型环保材料研发项目投标邀请函模板3篇
- 敬老院老人不愿入住协议书(2篇)
- 《青蒿素类抗疟药》课件
- 《丰子恺白鹅》课件
- 2025年遵义c1货运上岗证模拟考试
- 2021年日历表-一月一张打印版78951
- 小学数学六年级上册期末考试试卷含答案(黄金题型)
- CJ/T 158-2002 城市污水处理厂管道和设备色标
- 二年级上册数学连算口算题卡(-打印版)
- 第一单元测试基础卷-【中职专用】2024-2025学年语文同步单元基础卷(高教版2023基础模块下册) (解析版)
- 危险作业清单
- 2023年盛京银行校园招聘人员笔试上岸历年典型考题与考点剖析附带答案详解
- 徽商与创新智慧树知到期末考试答案章节答案2024年安徽师范大学
- 合成生物学应用于新药开发
- 酒店运营管理 智慧树知到期末考试答案章节答案2024年山东青年政治学院
- 单病种管理理论知识考核试题及答案
评论
0/150
提交评论