饺子机及传动系统设计毕业设计论文_第1页
饺子机及传动系统设计毕业设计论文_第2页
饺子机及传动系统设计毕业设计论文_第3页
饺子机及传动系统设计毕业设计论文_第4页
饺子机及传动系统设计毕业设计论文_第5页
已阅读5页,还剩21页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

编号无锡太湖学院毕业设计(论文)相关资料题目:饺子机及传动系统设计信机系机械工程及自动化专业学号:0923039学生姓名:指导教师:(职称:副教授)(职称:)201目录一、毕业设计(论文)开题报告二、毕业设计(论文)外文资料翻译及原文三、学生“毕业论文(论文)计划、进度、检查及落实表”四、实习鉴定表无锡太湖学院毕业设计(论文)开题报告题目:饺子机及传动系统设计信机系机械工程及自动化专业学号:0923039学生姓名:指导教师:(职称:副教授)(职称:)2012课题来源自拟题目科学依据(包括课题的科学意义;国内外研究概况、水平和发展趋势;应用前景等)(1)课题科学意义饺子食品机械的应用前景和发展现状饺子食品在我国历史悠久,伴随着几千年的文明的发展已经成为我国食品文化中的代表,如饺子、包子、馄沌是主食的一部分;汤圆、月饼、粽子是传统节日中必不可缺的食物。如今,经济的迅速增长、人民生活水平的提高和生活节奏的加快,对食品行业提出了新的要求。而本人认为这些要求可以归纳为两大类:其一是食品的质量:如食用口感、卫生状况、营养含量等。其二便是食品供应的速度。而解决这两个矛盾要求的办法便是实现食品生产的机械化和自动化,通过机械动作可以极大程度的提高食品的生产率;采用环保的机械材料和严格的密封技术可以很好的保证食品卫生;而合理的工艺编排更能改善食品的口感。(2)饺子机的研究状况及其发展前景目前国内外厂家在包馅夹馅食品机械化上的研究已经取得了一定的成果成功研发了饺子机、包子机、馄沌机、汤圆机、月饼机以及自动化程度更高的全自动万能包馅机。因东西方饮食文化的差异,目前国外包馅成型类机械主要为日本所生产,如日产的自动万能包馅机,其最大生产能力可达每小时8000个,且加工范围极广,能生产各式馒头、包子、饺子、夹馅饼干、寿司、等等近百种产品,采用可拆卸料斗能实现快速更换馅料,内置的无级变速调控装置可以实现皮和馅的任意配比。广泛用于各种带馅食品的加工。而国内相关机械虽然在自动化和多功能方面较之日本产品还有一定的差距,但是通过改革开放以后二十余年的发展亦取得了很大的进步。以上海沪信饮料食品机械有限公司生产的水饺机为例:配备1.1Kw的电动机,生产效率达每小时7000个。已相当接近日产饺子机的生产水平。每逢过时过节现做现卖饺子往往出现供不应求的现象。当然也有很多人选择在家里自己做,却需要提前半天甚至一天进行准备,而包饺子的时候更是要叫上好几个亲朋过来帮忙方可。因此如果能研究开发一种能够以机械动作代替人工劳动的机器,那么除了可以节约大量的时间、降低饺子的生产成本、提高利润之外,更可以免除人们冬日里冒寒排队购物之苦,一举多得。饺子生产机的初步目标确定为能够实现饺子包馅成型工艺的机械化。未来可在此基础上加以改进和扩展,以实现横纵两方向发展。即饺子生产全过程的无人干预自动化与多功能化。研究内容①熟悉饺子机的工作原理与结构;②熟悉饺子机传动系统的布置与结构;③熟练掌握传动系统的设计计算方法;④掌握CAD的使用方法;⑤能够熟练使用UG进行三维的画图设计。拟采取的研究方法、技术路线、实验方案及可行性分析(1)实验方案对饺子机整体设计,拟定其传动部分的结构、转速等,使其能够半自动的进行加工。(2)研究方法=1\*GB3①用CAD进行二维画图,对饺子机结构有个全面的了解。②对饺子的传动部分进行计算与结构设计,使其提供合适的动力。研究计划及预期成果研究计划:2012年10月12日-20122013年1月12013年1月282013年3月4日-2013年4月12013年4月15日-2013年4月29日预期成果:达到预期的毕业设计要求,设计出的饺子机可以进行半自动加工,可以快速美观的加工出饺子,并且传动简单紧凑、满足工作要求。特色或创新之处①饺子机可以无需手工进行制作。②饺子制作过程安全,方便,快速,可以批量生产。③传动路线简单、紧凑,满足饺子加工的要求。已具备的条件和尚需解决的问题①设计方案思路已经明确,已经具备机械设计能力和饺子机方面的知识。②进行结构设计的能力尚需加强。指导教师意见指导教师签名:年月日教研室(学科组、研究所)意见教研室主任签名:年月日系意见主管领导签名:年月日英文原文wear181-183(1995)868-875CaseStudyTheoreticalandpracticalaspectsofthewearofvanepumpsPartB.AnalysisofwearbehaviourintheVickersvanepumptestA.Kunza,R.Gellrichb,G.Beckmannc,E.BroszeitaaInstituteofMaterialScience,TechnicalUniversityDarmstadt,P.O.Box111452,64229Darmstadt,GcmbUniversityforTechnol08y,EconomyandSocialScienceZittau/Goditz,FacukyofMaihematics,P.O.Box264,02763ZutaucPetersiliensrr.2d,03044Cottbus,Received16August1994;acceptedlNovember1994AbstractThewearbehaviourofthevanepumpusedinthestandardmethodforindicatingthewearcharacteristicsofhydraulicfluids(ASTMD2882/DIN51389)hasbeenexaminedbycomparisonofthecalculatedwearandexperimentaldatausingalubricantwithoutanyadditives.InadditiontothetestseriesaccordingtoDIN51389,temperatureprofilesfromthepumphavebeenanalysedusingthebulktemperaturesofthecontactingcomponentsandthetemperatureinthelubricationgapasinputdataforthewearcalculation.CartridgesusedintestsaccordingtotheGennanstandardhavebeenexaminedextensivelybeforeandaftereachruntoobtaininputdataforthemathematicalmodelandtoJocatewear.Ananalysisofthe:tluidpropertiesandaninvestigationoftheinnuenceofwearparticlesinthehydrauliccircuitwereperformed.Theexperimentalresultswerecomparedwiththewearprediction,whichwasverifiedbytheagreementintermsofload,temporalwearprogressandlocalwear.Conclusionshavebeendrawnwithregardtothevalidityoftheloadassumptionsandwearcalculation,aswellastothelimitsofapplicabilityofthismethodinthepresenceofadditives.Keywords:Vanepumps;Hydraulicfluids;Wearprediction;Vickersvanepumptest1.IntroductionEffortstodevelopamathematicaltoolforwearpredictionwillnotbesuccessfulwithoutconsideringwearanditsphenomena.ThetaskofPartBofthisstudyistodescribetheanalysisofthewearbehaviourinthetribosysteminvestigatedandhowtheknowledgeachievedinfluencesthecalculations.Inputdataarederivedfromthemeasurementofmechanicalandgeometricalquantities,suchasthehardness,stylusprofilometry,fluidpropertiesandcontactradii.Thermalquantitiesarealsoessentialforthemodellingoflubrication.Thecalculationsmustbeverifiedwithweardata.BecausethetribosystemtobeanalysedisthevanepumpemployedintheVickersvanepumptest,whichhasbeeninuseforabout40years,severalweardatacanbeusedforcomparisonbetweencalculatedandmeasuredwearresults.Thesearethewearmasses0043-1648/95/$09.50@1995ElsevierScienceS.A.AllrightsreservedSSDI0043-1648(94)07087-3aftereachtcstrun,theprogrcssionofwearovertimeandthelocalwearontheinnerringsurface;incombination,theseenableacomprehensivestatementtobemadeonthevalidityofthemathematicalmodeldescribedinPartA.2.ExperimentsAlIVickersvanepumptestsdescribedwererunwiththesamefiuid.ItisareferenceoiloftheGermanRcscarchAssociationforTransmissionTechnique(FVA),andisamineraloilwithoutanyadditives(FVA3).Thusthedisturbinginfluencesofadditivescanbeexcluded.2./.InputdataforcalculationFig.1liststheinputandoutputquantitiesofthecalculations.MostoftheinputparameterswerederivedsurfaceprofilescontactforceandcontactvelocitydynamicviscositycontactradiihardnessvaluesYoungsmoduli,Poissonnumbersandlubricationgapspecificshearenergydensities*pressureexponentc,fviscosity;tlubricationgaptemperatureRoughsurfuce←→shaarenergyhypot←→elastoliubiction↓Wm=f(t)Wf=f(ɑ)Fig.1.InputparametersandoutputquantitiesofthemathematicalmodelofPartA.Fig.2.CartridgeV104C:bushing,rotor,ring,bushing(abcwe),singlevane,pin(below).experimentallyfromallthecomponentsinvolvedbeforeandafteruseinthevanepumptests.Themechanicalcomponents,whichmustberenewedforeachtestrun,areshowninFig.2.Suchacartridgekitconsistsofarotor,ring,12vanes,bushingsandpin.Stylusprofilometrywasperformedontheinnersurfaceoftheringandonthetipsoftwovanesofthecartridgebeforeandaftereachtestrun.Earlierinvestigationshaveshownthattenparallelsectionsintheslidingdirectiononeachbodyaresufficienttodescribethesurfacetopographyinastatisticallysatisfactorymannerasatwo-dimensionalisotropicgaussianfieldaccordingtoRef.[1].Onlythehighpassfilteredcomponentsoftheprofile(samplinglength,1.5mm;cuto五0.25mm)wereusedtodeterminethespectralmomentsmo,m2,m4andtheparameterofroughnessa.Accordingtothepartitionofthecontactforceintodifferentloadingzones,thetopographicdataofthenewsurfaceswereusedforzoneIV(lowlevelload,seePartA).Fortheotherzoneswithhighercontactforces,theprofilesofthesurfacesinthefinalconditionwereused,whichcorrespondstotheappearanceoftheinnerringsurfaceafterthetestruns.Thecontactforceandcontactvelocitywerecalculatedwithdifferentfluidpressuresanddynamicforcesactingonthevanes,revolutionnumberandringradu,whereasthechangeincontactradiuswasdocumentedwithaprofileprojector.Becausetheringradiiaremuchlargerthar)theradiiofthevanesinthecontactzone,thevanescanbeassumedtobehertziancylindersslidingalongaplanesurfaceandthecontactradiiaresimplytheradiiofthevanetips.Eachvanetipwastwicedrawnupatmagnificationsof100:1andthecontactradiiandcontactlocationsweremeasuredwithastenciLMeanvaluesofthecontactradiiweretransferredtothecalculation,whichisbased(similartothesurfaceprofiles)onvanesinbothconditions.TheVickershardnessHVlOwasmeasuredontheringandthreevanesofeachcartridge.Thishardnessleadstoabetterreproducibilitythanmicrohardnessvalues,butduetothelargeindenterload,itcouldonlybetakenafterthetestruns.Thereforechangesinhardnessvaluescouldnotberegistered.TheYoung'smoduli,Poissonnumbersanddensitiesofthering(AISI52100)andvanematerials(M2regC)arethefirstinputparametersintheshearenergyhypothesisandwereobtainedfromtheliterature.Thespecificshearenergydensities(seePartA)arematerialspecificconstants[2l.Thefluidproperties(Fig.1)weremeasured,derivedfromtheliteratureorcalculated.Toobtainthedynamicviscosity,thedensitiesandkinematicviscositiesat20,40and800Cweremeasured.BecausethefluidisareferenceoilofFVA,thepressureexponentoftheviscosityisgiven[3].Thetemperatureinthelubricationgapbetweentheringandvaneswasapprox:imatedbymeasurementsandcalculationsdescribedbelow.2.2.TemperatureprofilesTemperaturemeasurementwasperformedtoobtaininformationonhowaheatabletribometermustbecontrolledtosimulatethewearbehaviourofthevanepump.Thereforeshortenedtestrunswerecarriedoutuntiltemperatureswerestabilized.These10hvanepumptestsdeliveredtheinputdatafortheapproximationofthelubricationgaptemperatureinthering-vanecontact,aswellasadditionalwearmassestobecomparedwiththecalculatedprogressiortofwearintime.ThesamplingprinciplesforacquiringthetemperatureprofilesofthevanepumpareillustratedinFig.3.Thetemperatureofthelubricantinthegapbetweentheringandvaneswasestimatedtobeequaltoorgreaterthanthebulktemperatureontheinnerringsurface.Followingthefirstmainstatementofthermodynamics,theheatfluxQmpintothecomponentsofthepumpcanbederivedfromwiththefluidasthemediumforenergytransport.Qa,mpcanonlybetransferredtothecomponentsshowninFig.2.Forthesametemperaturedifferencesandmaterials,thisheatnUXcanbedividedintosinglecomponentfluxesaccordingtotherelationofmasses.ThederivedfluxQringistheheatwhichflowsinacertaintimeperiodinaradialdirectionthroughthering.Withtheknowntemperaturesontheouterringsurface,thebulktemperaturesontheinnerringsurfacecanbecalculatedandtransferredtothemodelofelastohydrodynamiclubrication.AlltestrunswiththeVickersvanepumpV104CwereperformedonatestrigaccordingtoASTMD2882/DIN51389,whichisshownschematicallyinFig.4.Thesestandardsdescribetheprocedurefortestingtheanti-wearpropertiesofhydraulicfiuids.TostarttheVickersvanepumptestaccordingtotheGermanstandard,thesystempressuremustberaisedinstepsof2MPaevery10min,beginningat2MPa,untilafinalpressureof14MPaisreached.Atthisstage,thefluidtemperaturemeasurcdbcforethepump(seeFig.4)mustbecontrolledtoguaranteeakinematicviscosityof13mm2S-iattheinletforevery:tluidtested.Theseconditionsmustbemaintaineduntilthetestisabortednormallyafter250hbyopeningthebypassofthepressurecontrolvalvebeforethemotorisstopped.Byacomparisonofthewearachievedontheringandvaneswiththeupperwearlimits,theanti-wearpropertiesofthefluidtestedcanbederived.ForperformingthetestssafelywiththefluidFVA3,itwaspreheatedt0400Candcirculatedinapressurefreeway.ThedamagewhichmayoccurduringthecriticalfirsthouroftherunscanbeavoidedusingTiNcoatedbushings[4].Forcomparisonwiththeresultsderivedfromcomputation,thewearproducedintheserunsmustbedocumentedasamounts,bothlocallyandtemporally.Thewearmasseswerederivedfromtheweightdifferencesoftheringandvanesbeforeandaftereachrun.Theywereobtainedfromasequenceoffour250htestrunsandtw010hrunsfortemperaturemeasurement.Thelocallinearamountofwearwasdocumentedbythedifferencesintheinnerringradiiperdegreeofrevolution,whichweremeasuredbysurfacedigitizationalongtheinnerringsurfaceatthreedifferentpositionsoftheringwidthbeforeandafterthetesiruns.Inearlierinvestigations[5],thewearprogressionovertimeofthevaneswasmeasuredunderidenticaltestingconditions,exceptforalowerfluidtemperature.Forthisexperiment,theradiotracertechniquewasused.Twovanetipsinthesetof12vanesofeachcartridgewereradiologicallyactivatedbybombardmentwithprotons.Adetectorclosetothepumpbodyallowedthedecreaseinradiologicalactivitytobemonitoredcontinuously,whichwasfoundtobereciprocallyproportionaltothelinearamountofvanewearasafunctionoftime[5l.Duetothegoodtemperingpropertiesofthevanematerial(M2regC),withaspecificsecondaryhardnessmaximumbetween450and5500C,theinfiuenceoftheactivationprocessat2200Conthewearbehaviouroftheactivatedzoneofthevanetipscouldbeexcluded.Phyd+Pfric-Qcomp-Qfluid=0(1)Qfluid=mcfluid△Tfluid(2) Fig.4.Hydrauliccircuitofthetestrig.3resultlinesthestatisticalreliabilityofsurfacemodellingasatwo-dimensionalisotropicgaussianfield.Althoughonlythefilteredprofilesscannedintheslidingdirectionareshown,adistinctchangeinsurfaceroughnessisobvious.Agoodrepresentationofthewearphenomena(seePartA)bytheinputdataforthewearcalculationderivedfromtheseprofilescanbeassumed.ThechangeinthevanetipshapeoverthetestingperiodisdocumentedinPartA.Thehardnessvaluesfortheringsandvanesvariedfrom743t0769HVlO(rings)andfrom778t0816HVlO(vanes).Inallcases,thevanesofonecartridgehadhigherhardnessvaluesthanthering,butthesedifferencesvariedandhadalargeinfluenceonthewearcalculation(seePartA).Themeasurementofthefiuidpropertiesled,incombinationwiththekinematicviscosityprescribedbytheGermanstandard,toafluidtemperatureof84-86oCatthepumpinlet.Togetherwiththeothertemperaturemeasurementsacquiredinthe10hruns,thesetemperatureprofilesareillustratedinFig.6.TestNumbertwasfoundthat,inaboutlh,alltemperatureswerestabilized.Itshouldbenotedthatalltemperaturesinoronthepumpcomponentsarehigherthanthefluidtemperaturemeasuredbehindthepump.Thehighesttemperatureswerefoundontheouterringsurface,withsignificantdifferencesdependingonthelocationofthethermocouples.Thecalculationofthebulktemperaturesontheinnerringsurfaceviatheheatfluxbalanceeliminatedtheinfiuenceofthedifferentringthicknessesatthescanlocations.Dependingontbesedifferentdistancesforheatconduction,between4and70Cmustbeaddedtothemeanvaluesofthecomponenttemperaturestoobtainthesurfacetemperatures.Thesevaluesare20c70higherthanthefluidtemperaturemeasuredbehindthepump,whichwasusedasinputdataforthewearcalculation.Duringthelhstartingphaseofthetestruns,thestepwiseincreaseinsystempressureleadstoanimmediateeffectonthecomponenttemperatures,whereasthefluidtemperatureincreaseswithamoreorlessconstantgradient,whichdemonstratestheassociationofloadandfrictionalheat.Thefour250htestrunscausedamixtureofadhesiveandabrasivewearatahighlevel(seePartA).ThewearresultsachievedareshowninFig.7.RingwearincreasedfromtestItotest3.Thereforethe12pmfilternormallyusedwasreplacedafterthethirdtestbya3pmfilter,andapressure-freerunwithanadditionalcartridgewasstartedasacleaningprocedure.Duetothefilterchange,thereservoirneededtoberefilledbyaboutlOv-/oofitscontentwithfreshfluidbeforecontroltest4,againwitha12ymfilter,wasstarted.Inadditiontotheseeffortstominimizepossiblewearparticleinfluence,acomparisonoftheviscosityandneutralizationnumberwiththoseoffreshfluidshowedonlyaninsignificantriseinviscosityandalowneutralizationnumberafter750hoftesting.Intest4,thehighestvalueforringandvanewearataconstantlevelwasachieved.Foralltests,thelinearamountofwearontheringsurfaceshowedastrongdependenceonthemeasurementlocationwithstrictlylimitedareasofhighandlowwear.TheresultsofcontinuousvanewearmonitoringareshowninFig.8inadditiontotheprincipleofmeasurement.Degressivewearlapswerefound,wherethestationarylevelwasreachedafter100h.4.DiscussionBeforethewearcalculationscanbeverifiedbyweardata,itmustbedemonstratedthattheassumptions,measurementsandcalculationsformingtheinputforthemathematicalmodelcorrelatewiththewearmeasured.Fig.9comparesthecalculatedloadnthering-vanecontact,derivedfromthecontactforceandchangingshapesofthevanetipsintroducedinPartA,withthemeasuredlinearamountsofwearalongtheinnerringsurfaceandthetemperaturedistributionatthesameplace.Thereisqualitativelygoodcorrelationfortheprogressionofloadandwearwithcharacteristicleapsatalmostthesamedegreeofrevolution.Inaddition,hightemperature,resistingdynamicequilibrium,isfoundwheretheloadandweararehighandviceversa.Thereforeitisabsolutelycorrecttocreatedifferentloadingzones(accordingtofig.2inPartA)asinputforthewearcalculations.Althoughafewdifferencesinqualitycanbefoundinthepro-gressionofhertzianpressureandthelinearamountsofwear,seriousmistakesinthecollectionofinputinformationareprobablyavoided,sothattheverificationofthecalculatedwearresultsbyexperimentaldatawillshowthevalidityofthemathematicalmodel.Forlocalamountsoflinearringwear,thisverificationcanbeseeninFig.10.Itshouldbenotedthatthecalculationandexperimentalresultsareplacedinthesamedecade,theprogressionsshowthecharacteristicleapssimilartotheloadinFig.9atalmostthesamedegreesandtheamountsaredirectlycomparable.Theloadingzonesareadaptedtotheprogressionofthecontactforce(seePartA),whichthecalculatedlinearwearmustfollowaswellasthehertzianpressure.Thedifferentshapesofthetwographsbetween300and700(2100and2500)turnanglesremainunsatisfactory,becausethisshowsanuncertaintyintheloadassumptions.Thefluidpressureinacellformedbytwovanes,rotorandringwasassumedtobesegmentallyconstant.Thereforethecontactforcewasdeterminedtofollowtheseassumptions,whichneedtobedempressure)inthering-vanecontact,derivedfromthecontactforceandchangingshapesofthevanetipsintroducedinPartA,withthemeasuredlinearamountsofwearalongtheinnerringsurfaceandthetemperaturedistributionatthesameplace.Thereisqualitativelygoodcorrelationfortheprogressionofloadandwearwithcharacteristicleapsatalmostthesamedegreeofrevolution.Inaddition,hightemperature,resistingdynamicequilibrium,isfoundwheretheloadandweararehighandviceversa.Thereforeitisabsolutelycorrecttocreatedifferentloadingzones(accordingtofig.2inPartA)asinputforthewearcalculations.Althoughafewdifferencesinqualitycanbefoundintheprogressionofhertzianpressureandthelinearamountsofwear,seriousmistakesinthecollectionofinputinformationareprobablyavoided,sothattheverificationofthecalculatedwearresultsbyexperimentaldatawillshowthevalidityofthemathematicalmodel.Forlocalamountsoflinearringwear,thisverificationcanbeseeninFig.10.Itshouldbenotedthatthecalculationandexperimentalresultsareplacedinthesamedecade,theprogressionsshowthecharacteristicleapssimilartotheloadinFig.9atalmostthesamedegreesandtheamountsaredirectlycomparable.Theloadingzonesareadaptedtotheprogressionofthecontactforce(seePartA),whichthecalculatedlinearwearmustfollowaswellasthehertzianpressure.Thedifferentshapesofthetwographsbetween300and700(2100and2500)turnanglesremainunsatisfactory,becausethisshowsanuncertaintyintheloadassumptions.Thefluidpressureinacellformedbytwovanes,rotorandringwasassumedtobesegmentallyconstant.Thereforethecontactforcewasdeterminedtofollowtheseassumptions,whichneedtobedem-onstratedbycorrespondingexperiments.Comparedwiththemeasurement,thecontactforceinloadingzoneIwasassumedtobetoohighandcausedvaluesabovetheexperimentaldata.Thiswasduetodifficultiesinmodellingthelargevarietyofvanetipgeometrieswhichcanappearinonecartridgeandstronglydeterminethecontactforceinthisregion.Moreinformationaboutthereliabilityofloadassumptionscouldhavebeenobtainedfromaknowledgeofthebulksurfacetemperatures,whichwerenotmeasuredorcalculated.Despiteotherdeviationsofthetwoprogressions,theareasbeloweachgrapharecomparable,sothatagoodcorrelationbetweencalculatedandmeasuredwearmassescanbeexpected.Forvanewearmassesafter250hoftesting,theexpectationshavebeenfulfilledinasatisfactorymanner,Iftheprogressionofthevanewearmassintime(seePartA)isverifiedbythemeasuredamountsoflinearwear(Fig.8),goodcorrelationoftheprogressionscanbefound.Forbothvalues,thestationaryphaseisreachedafter100h.Thedifferencesinthegradientsduringthestationaryphasemaybecausedbythedifferenttcmperaturesofthetwotestseries.Thedif-ferencesintheringwearmassescanbeinterpretedasscattering(whichisdependentonthetestingprocedure),becausethethermalagingandtheinfluenceofwearparticlescanbeneglectcd,especiallyiftherechargewithfreshfluidistakenintoconsideration.ThusthesCwcarresultsarcalsowellapproximatedbythecalculation,becausethecalculatedaveragewearmassaftcr250hisplacedinthemiddleofthefourexperimentalresults(seePartA).Thisissupportedbythefactthatthewearmassesachievedintheshort-timerunsaresituatedclosetothecalculatedprogressionofthewearmassesforthattime.conclusionIThefollowingconclusionscanbedrawn.(1)Forthewearsystem,VickersvanepumpV104C/lubricantFVA3,agoodcorrelationbetweenloadandwearlocationontheringwasfound,whichisassociatedwithacorrespondingtemperaturedistribution.(2)Theloadassumptionsarewidelyconfirmed.(3)ThemathematicalmodelintroducedinPartA,withinputinformationbasedontheseassumptions,deliverswearmasses,progressionsofwearmassesintimeandlocalamountsoflinearwearwhichcorrelatewithcorrespondingexperiments.(4)Thismathematicalmodelbasedontheshearenergyhypothesisisaqualifiedinstrumentforretracingthewearbehaviourinfrictionregimeswithboundarylubrication,withtheexclusionofadditives.(5)Largeeffortsarenecessarytoobtainqualifiedinputdata.(6)Wearpredictionisnotpossible,becauseseveralparametersderivedfrominvestigationsoncomponentsintheirfinalconditionneedtobeusedasinputdata.Futureinvestigationsarerequired.(1)Toimprovetheassumptionsonthestructureofthefiuidpressureinthepump.(2)Todevelopamethodtoobtainallinputdatafromcomponentsinthenewconditiontoallowrealwearprediction.(3)Toenlargethetheorywithanempiricalstatementdescribingtheinfluenceofadditives.ExperimentsandinvestigationssimilartothoseinthispaperhavebeenperformedwiththesamefluidcontainingadditivesandwithacommerciallyavailableHMfluid.中文译文叶片泵磨损理论和实践方面第二部分:关于维克斯公司叶片泵实验磨损情况分析Kunza,R.Gellrichb,G.Beckmannc,E.Broszeitaa材料科学研究所,达姆城工业大学,P.O.Box111452,64229达姆城,德国b齐陶摘要叶片泵的磨损状况标准方法是指示水力的失效流体(美国材料试验学会D2882/德国工业标准51389)已经被通过用没有任何添加剂的润滑剂得到的失效计算和审查实验数据审查。除了依照德国工业标准得到的检验系列之外,泵的剖面温度已经用来自绝大部分联系原件和间缝润滑之间的温度作为失效计算的原始数据。根据德国标准检验的卷筒已经被前前后后严格的测试为了获得精确模型的原始数据和确定磨损位置。执行流体的性能分析和在液压环路中粒子磨损的调查。实验结果和预测的相比较,预测的是由协议核实负荷条件,时间磨损过程和当地的磨损证实的。已经得出关于合理的载荷消耗和失效校核的结论,就像这种方法在添加剂存在的适用性范围。1.说明在没有考虑到失效磨损的一些现象时,努力去开发一种精确工具去预测磨损失效是不会成功的。本研究第二部分的目的就是为了描述磨损行为在调查的tribo系统中的分析和怎样运用知识完成影响计算。初始数据来源于机械的测量和几何量,比如硬度,针式轮廓,流体特性和接触半径。热量对模型润滑也是必不可少的的数据量。2.实验所有的维克斯叶片泵的实验都是用同种的流体。它是德国一个研究协会为传输技术涉及的一种油FVA,它是一种没有任何添加剂的矿物质油FVA3。因此可以排除添加剂所引起的后果。2.1计算原始数据数据1.列出输入和输出的计算量。大部分参数来源于:粗糙度流体性质平面度接触力和接触速度动态粘度接触半径粘性的压力指数硬度标准间隙润滑温度泊松数和密度实际单位剪切力随即模拟的粗糙表面←→剪切力假说←→弹性液压润滑↓Wm=f(t)Wf=f(ɑ)图1.数学模型的第一部分的原始参数和实际工程量图2.卷筒V104C:套管,转子,定子,上套管,单一叶片,钉所有涉及实验前后的原件在叶片泵测试都用到了。在每个实验中的机械原件都不一样,比如在图2中卷筒由转子,定子,12个轮叶,套管和钉组成。在每一个实验前后古老的轮廓测定法会在卷筒的环的内表面和两个叶片的顶端测定。根据专家所说,较早的研究已经指出十个类似的部分在每个部分的不同方向由统计学来描述表面度是足够的。只有轮廓中重要的滤过部件(采样长度1.5mm,剪下0.25mm)用于测定光谱时刻m0,m2,m4和粗糙度ɑ。依据不同承载位置的接触力的划分,新表面的地形图数据被用于平面Ⅳ(低负载,参考partA)。对于另外一些存在高载荷的平面,最后一个条件的表面的轮廓被用了,在试运转之后证明外表内环符合要求。尽管接触半径的变化被记录在剖面投光器,接触力和接触速度还是根据叶片上不同的流体压力,动力,旋转量和环半径计算得出。因为定子的半径远远大于在接触位置叶片的半径,叶轮能被假定变得赫兹圆柱体滑动向前一个平的表面和接触半径只是叶轮的半径。每一个叶片的尖端的损耗是100:1的两倍,并且接触半径和接触为定位由模板测量。接触半径的平均值由计算得到,而计算是根据两种不同的条件。测得定子和三个叶片的硬度为10HV,这个硬度值决定了它比微硬度值有更好的弹性,但是由于存在大的切应力,所以它只能在试验之后得到。所以硬度标准不能被注册。泊松数,模数,定子的密度和叶片原料是从文献中得到的剪切力假说中最基本的参数。实际的单位剪切力是不变的。数据1.中的流体性质是由计算和文献中得到的。密度和运动粘性分别在20℃、40℃和80℃测量而得到动态粘性参数。粘性的压力指数由德国传输工程动力研究协会给出。在定子和叶片间隙间的润滑温度接近于测定和计算得到的。2.2温度分布测量温度是为了获得需要多少加热量能使得接近叶片泵的磨损现象。因此要不断缩短实验期直到温度稳定为止。这些10h轮叶泵检验为近似值递送输入数据润滑间隙温度在这定子与轮叶的接触,连同另外磨耗集合被与磨耗的有计划级数相较及时。叶片泵的温度分布在数据3.通过抽样原理论证。在定子和叶片间隙中的润滑温度估计会等于或稍高于内部定子主题表便的温度。其次主要的热力学报表,热流量Qcomp可由一下得数据3.温度测量原理Phyd+Pfric-Qcomp-Qfluid=0(1)和Qfluid=mcfluid△Tfluid(2)图3.流体作为能量运输的媒介,热量通量可以在图2.中体现出来。同样的温度差异和材料的热通量可分为单根据构件的关系fhrxes肿块。推导过程中产生的热量通量向是流动的在一段时间的径向通过定子。与已知的温度在外环线表面上的温度,大部分的内圈的表面能计算和转移到模型。2.3.资料比较所有的测试运行与维氏的叶片泵V104C试验台进行了按照ASTM(美国材料试验协会)D吗2882/DIN51389位,这体现schematically图4。这些标准描述程序进行测试抗磨液压流体的性质。开始叶片泵试验的维氏据德国标准、系统压力必须得到提高的脚步每隔10分钟的2兆帕,开始在2兆帕,直到有一个最后的压力达到14个兆帕。在这一阶段,泵的流体温度测量之前(见图4)必须进行控制,在进口为每个流体进行测试保证了运动学13mm2s-1。这些条件必须持续到本测试是中止250小时之后通常通过打开旁路的

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论