




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
最值
区间内部某点取得区间端点取得极值点驻点导数不存在的点第3章导数的应用四、函数的最值1、闭区间上连续函数的最大(小)值●求闭区间上连续函数最值的步骤:①求出在区间内部的所有驻点及导数不存在的点。②计算上述点及端点处的函数值。③
比较计算出的函数值的大小,其中最大者就是
函数的最大值,最小者就是函数的最小值。◆
若函数在闭区间上连续且单调,则最值在端点处取得。例
求在上的最大值和最小值。解令得驻点:所求的最大值为最小值为(舍)又2、实际问题中的最值问题在实际问题中,常常需要求在一定条件下,怎样才能使用料最省,容积最大,平均成本最低,费用最少等问题,这些问题反映到数学上,都可归结为求某一函数的最大(小)值问题。●
利用导数解决实际问题中的最值时,若所建立的函数在区间内只有一个驻点
,且从实际问题可知在内必定有最值,则就是最值点。例1将边长为的正方形四角截去四个相等的小解设所截小正方形的边长为由题意得:令得驻点:(惟一的驻点)当小正方形边长为时,能使盒的容积最大。正方形,然后折成一个无盖的盒,问小正方形边长为多少时,能使盒的容积最大?例2
要制造一个容积为的带盖圆柱形铁桶,问底半径和高分别为何值时,才能使所用的铁皮最省?设铁桶的表面积为由题知解令得驻点:(唯一的驻点)从而当底半径,高时所用的铁皮最省。练习
制作一个底面为正方形,体积为64的
封闭长方体容器,如何设计才能使所用材料最省?
解
设底面正方形边长为,高为,长方体的表面积为由题意得:令得惟一驻点:故….(一)经济分析中常见的函数1、需求函数在一定的价格水平下,消费者愿意而且有支付能力购买的商品量。设需求量,价格,则●
一般地,需求函数是单调减少函数。需求量由多种因素决定。其中商品的市场价格是影响它的一个主要因素。需求量:五、导数在经济问题中的应用2、供给函数在一定的价格水平下,生产者愿意生产并可供出售的商品量。供给量也由多种因素决定。设供给量,价格,则●
一般地,供给函数是单调增加函数。供给量:●
市场均衡对一种商品而言,若,则称此商品达到市场均衡。市场均衡价格:市场均衡数量:▽例1已知某产品的需求函数为:供给函数为:求该产品的市场均衡价格和市场均衡数量。解由得解之,故从而▽3、成本函数生产一定数量的产品所要投入的各种生产要素的总费用。厂房、设备等固定资产的折旧,管理者的固定工资等它不随产品产量的变化而变化。变动成本:原材料费用、工人工资等,它随产品产量的变化而变化。成本函数:平均成本函数:成本:固定成本:4、收入函数(收益函数)生产者出售一定量产品所得到的全部收入。设总收入,销售量,收入函数:价格,则平均收入函数:总收入:5、利润函数总收入与总成本之差。利润函数:平均利润函数:●盈利:亏损:盈亏平衡:利润:例2
设某商品的需求函数为:试求该商品的收入函数,并求销量为200件时的总收入和平均收入。
由得又解(二)边际定义:若是经济问题中的某个可导函数,则称边际函数值。的边际函数。边际函数在点处的●
边际成本:●
边际收益:●
边际利润:▽●边际函数的经济解释的经济解释:函数在点处,当改变一个单位时,相应地近似改变个单位。证明:▽例1
某化工厂日生产能力最高为1000吨,每日产品求:当日产量为100吨时的边际成本。的经济解释:解的总成本(单位:元)是日产量(单位:吨)的函数:▽
例2设某种家具的需求函数为
为需求量。试求销售450件时的边际收入。其中(单位:元)为家具的销售价格,(单位:件)解由得收入函数为边际收入函数为故的经济解释:▽(三)经济分析中的最值问题例1
某厂生产某种产品千件时的总成本函数为:(万元),单位销售价格为:(万元/千件),试求:1)产量为多少时可使利润达到最大?2)最大利润是多少?解1)由已知得利润函数从而有令得驻点是利润函数的最大值点。故当产量为千件时可使利润达到最大。(2)最大利润为(万元)是利润函数的的唯一驻点,又该问题确实存在最大利润。例2某厂生产一批产品,其固定成本为2000元,每生产一吨产品的成本为60元,对这种产品的市场需求规律为(为需求量,为价格)。试求:1)成本函数,收入函数;2)产量为多少吨时利润最大?解1)成本函数故收入函数2)利润函数令得驻点是利润函数的唯一驻点,又该问题确实存在最大利润.
是利润函数的最大值点。故当…..例3设某产品的成本函数为:其中是产量(单位:台).(万元),求使平均成本最小的产量,并求最小平均成本
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 沧州医学高等专科学校《应用多元统计分析实验》2023-2024学年第二学期期末试卷
- 化学(湖北卷)-2025年中考考前押题最后一卷
- 2025 届高考写作指导与素材积累:阐述社会责任意识的培养与重要性
- 北京政法职业学院《古代文学》2023-2024学年第二学期期末试卷
- F油田定向井网加密水平井提高采收率机理与方案研究
- 北京石油化工学院《版画基础》2023-2024学年第二学期期末试卷
- 北京理工大学《中医骨伤中药方剂学》2023-2024学年第二学期期末试卷
- 北京农学院《物流自动化技术》2023-2024学年第二学期期末试卷
- 2025年便利店智能化门店设计与空间布局优化报告
- 2025年便利店线上线下融合的O2O模式研究报告
- 2025届湖南省高考化学第一轮复习模拟选择题-化学与生活43道(附答案)
- 生物化学检验技术 课件 第七章 糖代谢紊乱检验
- 物理-2025年中考终极押题猜想(广州专用)(原卷版)
- 医院培训课件:《血液净化质量控制标准解读》
- GB/T 36547-2024电化学储能电站接入电网技术规定
- GB/T 44908-2024风力发电场技改升级安全要求及评价方法
- 江苏省苏州市(2024年-2025年小学五年级语文)统编版期末考试(下学期)试卷及答案
- 手术室护士长年终述职
- 2024年度城市供水管道维修服务合同
- 钢丝网骨架塑料管的质量控制方案
- 家具翻新合同模板
评论
0/150
提交评论