![重庆市万州龙驹中学2022年高考考前模拟数学试题含解析_第1页](http://file4.renrendoc.com/view/8bedb724ab130434b057fe276bf1f571/8bedb724ab130434b057fe276bf1f5711.gif)
![重庆市万州龙驹中学2022年高考考前模拟数学试题含解析_第2页](http://file4.renrendoc.com/view/8bedb724ab130434b057fe276bf1f571/8bedb724ab130434b057fe276bf1f5712.gif)
![重庆市万州龙驹中学2022年高考考前模拟数学试题含解析_第3页](http://file4.renrendoc.com/view/8bedb724ab130434b057fe276bf1f571/8bedb724ab130434b057fe276bf1f5713.gif)
![重庆市万州龙驹中学2022年高考考前模拟数学试题含解析_第4页](http://file4.renrendoc.com/view/8bedb724ab130434b057fe276bf1f571/8bedb724ab130434b057fe276bf1f5714.gif)
![重庆市万州龙驹中学2022年高考考前模拟数学试题含解析_第5页](http://file4.renrendoc.com/view/8bedb724ab130434b057fe276bf1f571/8bedb724ab130434b057fe276bf1f5715.gif)
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2021-2022高考数学模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知函数,若对于任意的,函数在内都有两个不同的零点,则实数的取值范围为()A. B. C. D.2.已知,则“m⊥n”是“m⊥l”的A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件3.已知函数,且),则“在上是单调函数”是“”的()A.充分不必要条件 B.必要不充分条件 C.充分必要条件 D.既不充分也不必要条件4.已知函数在上有两个零点,则的取值范围是()A. B. C. D.5.“”是“,”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分又不必要条件6.计算等于()A. B. C. D.7.在复平面内,复数对应的点的坐标为()A. B. C. D.8.已知函数在上都存在导函数,对于任意的实数都有,当时,,若,则实数的取值范围是()A. B. C. D.9.已知椭圆:的左、右焦点分别为,,过的直线与轴交于点,线段与交于点.若,则的方程为()A. B. C. D.10.数列满足:,,,为其前n项和,则()A.0 B.1 C.3 D.411.若的二项展开式中的系数是40,则正整数的值为()A.4 B.5 C.6 D.712.若,则,,,的大小关系为()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知函数为上的奇函数,满足.则不等式的解集为________.14.定义在上的奇函数满足,并且当时,则___15.一个空间几何体的三视图及部分数据如图所示,则这个几何体的体积是___________16.记复数z=a+bi(i为虚数单位)的共轭复数为,已知z=2+i,则_____.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数,的最大值为.求实数b的值;当时,讨论函数的单调性;当时,令,是否存在区间,,使得函数在区间上的值域为?若存在,求实数k的取值范围;若不存在,请说明理由.18.(12分)已知都是各项不为零的数列,且满足其中是数列的前项和,是公差为的等差数列.(1)若数列是常数列,,,求数列的通项公式;(2)若是不为零的常数),求证:数列是等差数列;(3)若(为常数,),.求证:对任意的恒成立.19.(12分)三棱柱中,平面平面,,点为棱的中点,点为线段上的动点.(1)求证:;(2)若直线与平面所成角为,求二面角的正切值.20.(12分)已知函数,.(1)当为何值时,轴为曲线的切线;(2)用表示、中的最大值,设函数,当时,讨论零点的个数.21.(12分)如图,已知椭圆的右焦点为,,为椭圆上的两个动点,周长的最大值为8.(Ⅰ)求椭圆的标准方程;(Ⅱ)直线经过,交椭圆于点,,直线与直线的倾斜角互补,且交椭圆于点,,,求证:直线与直线的交点在定直线上.22.(10分)已知函数.(1)求不等式的解集;(2)若关于的不等式在区间内无解,求实数的取值范围.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.D【解析】
将原题等价转化为方程在内都有两个不同的根,先求导,可判断时,,是增函数;当时,,是减函数.因此,再令,求导得,结合韦达定理可知,要满足题意,只能是存在零点,使得在有解,通过导数可判断当时,在上是增函数;当时,在上是减函数;则应满足,再结合,构造函数,求导即可求解;【详解】函数在内都有两个不同的零点,等价于方程在内都有两个不同的根.,所以当时,,是增函数;当时,,是减函数.因此.设,,若在无解,则在上是单调函数,不合题意;所以在有解,且易知只能有一个解.设其解为,当时,在上是增函数;当时,在上是减函数.因为,方程在内有两个不同的根,所以,且.由,即,解得.由,即,所以.因为,所以,代入,得.设,,所以在上是增函数,而,由可得,得.由在上是增函数,得.综上所述,故选:D.【点睛】本题考查由函数零点个数求解参数取值范围问题,构造函数法,导数法研究函数增减性与最值关系,转化与化归能力,属于难题2.B【解析】
构造长方体ABCD﹣A1B1C1D1,令平面α为面ADD1A1,底面ABCD为β,然后再在这两个面中根据题意恰当的选取直线为m,n即可进行判断.【详解】如图,取长方体ABCD﹣A1B1C1D1,令平面α为面ADD1A1,底面ABCD为β,直线=直线。若令AD1=m,AB=n,则m⊥n,但m不垂直于若m⊥,由平面平面可知,直线m垂直于平面β,所以m垂直于平面β内的任意一条直线∴m⊥n是m⊥的必要不充分条件.故选:B.【点睛】本题考点有两个:①考查了充分必要条件的判断,在确定好大前提的条件下,从m⊥n⇒m⊥?和m⊥⇒m⊥n?两方面进行判断;②是空间的垂直关系,一般利用长方体为载体进行分析.3.C【解析】
先求出复合函数在上是单调函数的充要条件,再看其和的包含关系,利用集合间包含关系与充要条件之间的关系,判断正确答案.【详解】,且),由得或,即的定义域为或,(且)令,其在单调递减,单调递增,在上是单调函数,其充要条件为即.故选:C.【点睛】本题考查了复合函数的单调性的判断问题,充要条件的判断,属于基础题.4.C【解析】
对函数求导,对a分类讨论,分别求得函数的单调性及极值,结合端点处的函数值进行判断求解.【详解】∵,.当时,,在上单调递增,不合题意.当时,,在上单调递减,也不合题意.当时,则时,,在上单调递减,时,,在上单调递增,又,所以在上有两个零点,只需即可,解得.综上,的取值范围是.故选C.【点睛】本题考查了利用导数解决函数零点的问题,考查了函数的单调性及极值问题,属于中档题.5.B【解析】
先求出满足的值,然后根据充分必要条件的定义判断.【详解】由得,即,,因此“”是“,”的必要不充分条件.故选:B.【点睛】本题考查充分必要条件,掌握充分必要条件的定义是解题基础.解题时可根据条件与结论中参数的取值范围进行判断.6.A【解析】
利用诱导公式、特殊角的三角函数值,结合对数运算,求得所求表达式的值.【详解】原式.故选:A【点睛】本小题主要考查诱导公式,考查对数运算,属于基础题.7.C【解析】
利用复数的运算法则、几何意义即可得出.【详解】解:复数i(2+i)=2i﹣1对应的点的坐标为(﹣1,2),故选:C【点睛】本题考查了复数的运算法则、几何意义,考查了推理能力与计算能力,属于基础题.8.B【解析】
先构造函数,再利用函数奇偶性与单调性化简不等式,解得结果.【详解】令,则当时,,又,所以为偶函数,从而等价于,因此选B.【点睛】本题考查利用函数奇偶性与单调性求解不等式,考查综合分析求解能力,属中档题.9.D【解析】
由题可得,所以,又,所以,得,故可得椭圆的方程.【详解】由题可得,所以,又,所以,得,,所以椭圆的方程为.故选:D【点睛】本题主要考查了椭圆的定义,椭圆标准方程的求解.10.D【解析】
用去换中的n,得,相加即可找到数列的周期,再利用计算.【详解】由已知,①,所以②,①+②,得,从而,数列是以6为周期的周期数列,且前6项分别为1,2,1,-1,-2,-1,所以,.故选:D.【点睛】本题考查周期数列的应用,在求时,先算出一个周期的和即,再将表示成即可,本题是一道中档题.11.B【解析】
先化简的二项展开式中第项,然后直接求解即可【详解】的二项展开式中第项.令,则,∴,∴(舍)或.【点睛】本题考查二项展开式问题,属于基础题12.D【解析】因为,所以,因为,,所以,.综上;故选D.二、填空题:本题共4小题,每小题5分,共20分。13.【解析】
构造函数,利用导数判断出函数的单调性,再将所求不等式变形为,利用函数的单调性即可得解.【详解】设,则,设,则.当时,,此时函数单调递减;当时,,此时函数单调递增.所以,函数在处取得极小值,也是最小值,即,,,,即,所以,函数在上为增函数,函数为上的奇函数,则,,则不等式等价于,又,解得.因此,不等式的解集为.故答案为:.【点睛】本题主要考查不等式的求解,构造函数,求函数的导数,利用导数和函数单调性之间的关系是解决本题的关键.综合性较强.14.【解析】
根据所给表达式,结合奇函数性质,即可确定函数对称轴及周期性,进而由的解析式求得的值.【详解】满足,由函数对称性可知关于对称,且令,代入可得,由奇函数性质可知,所以令,代入可得,所以是以4为周期的周期函数,则当时,所以,所以,故答案为:.【点睛】本题考查了函数奇偶性与对称性的综合应用,周期函数的判断及应用,属于中档题.15.【解析】
先还原几何体,再根据柱体体积公式求解【详解】空间几何体为一个棱柱,如图,底面为边长为的直角三角形,高为的棱柱,所以体积为【点睛】本题考查三视图以及柱体体积公式,考查基本分析求解能力,属基础题16.3﹣4i【解析】
计算得到z2=(2+i)2=3+4i,再计算得到答案.【详解】∵z=2+i,∴z2=(2+i)2=3+4i,则.故答案为:3﹣4i.【点睛】本题考查了复数的运算,共轭复数,意在考查学生的计算能力.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(1);(2)时,在单调增;时,在单调递减,在单调递增;时,同理在单调递减,在单调递增;(3)不存在.【解析】分析:(1)利用导数研究函数的单调性,可得当时,取得极大值,也是最大值,由,可得结果;(2)求出,分三种情况讨论的范围,在定义域内,分别令求得的范围,可得函数增区间,求得的范围,可得函数的减区间;(3)假设存在区间,使得函数在区间上的值域是,则,问题转化为关于的方程在区间内是否存在两个不相等的实根,进而可得结果.详解:(1)由题意得,令,解得,当时,,函数单调递增;当时,,函数单调递减.所以当时,取得极大值,也是最大值,所以,解得.(2)的定义域为.①即,则,故在单调增②若,而,故,则当时,;当及时,故在单调递减,在单调递增.③若,即,同理在单调递减,在单调递增(3)由(1)知,所以,令,则对恒成立,所以在区间内单调递增,所以恒成立,所以函数在区间内单调递增.假设存在区间,使得函数在区间上的值域是,则,问题转化为关于的方程在区间内是否存在两个不相等的实根,即方程在区间内是否存在两个不相等的实根,令,,则,设,,则对恒成立,所以函数在区间内单调递增,故恒成立,所以,所以函数在区间内单调递增,所以方程在区间内不存在两个不相等的实根.综上所述,不存在区间,使得函数在区间上的值域是.点睛:本题主要考查利用导数判断函数的单调性以及函数的最值值,属于难题.求函数极值、最值的步骤:(1)确定函数的定义域;(2)求导数;(3)解方程求出函数定义域内的所有根;(4)列表检查在的根左右两侧值的符号,如果左正右负(左增右减),那么在处取极大值,如果左负右正(左减右增),那么在处取极小值.(5)如果只有一个极值点,则在该处即是极值也是最值;(6)如果求闭区间上的最值还需要比较端点值的函数值与极值的大小.18.(1);(2)详见解析;(3)详见解析.【解析】
(1)根据,可求得,再根据是常数列代入根据通项与前项和的关系求解即可.(2)取,并结合通项与前项和的关系可求得再根据化简可得,代入化简即可知,再证明也成立即可.(3)由(2)当时,,代入所给的条件化简可得,进而证明可得,即数列是等比数列.继而求得,再根据作商法证明即可.【详解】解:.是各项不为零的常数列,则,则由,及得,当时,,两式作差,可得.当时,满足上式,则;证明:,当时,,两式相减得:即.即.又,,即.当时,,两式相减得:.数列从第二项起是公差为的等差数列.又当时,由得,当时,由,得.故数列是公差为的等差数列;证明:由,当时,,即,,,即,即,当时,即.故从第二项起数列是等比数列,当时,..另外,由已知条件可得,又,,因而.令,则.故对任意的恒成立.【点睛】本题主要考查了等差等比数列的综合运用,需要熟练运用通项与前项和的关系分析数列的递推公式继而求解通项公式或证明等差数列等.同时也考查了数列中的不等式证明等,需要根据题意分析数列为等比数列并求出通项,再利用作商法证明.属于难题.19.(1)见解析;(2)【解析】
(1)可证面,从而可得.(2)可证点为线段的三等分点,再过作于,过作,垂足为,则为二面角的平面角,利用解直角三角形的方法可求.也可以建立如图所示的空间直角坐标系,利用两个平面的法向量来计算二面角的平面角的余弦值,最后利用同角三角函数的基本关系式可求.【详解】证明:(1)因为为中点,所以.因为平面平面,平面平面,平面,所以平面,而平面,故,又因为,所以,则,又,故面,又面,所以.(2)由(1)可得:面在面内的射影为,则为直线与平面所成的角,即.因为,所以,所以,所以,即点为线段的三等分点.解法一:过作于,则平面,所以,过作,垂足为,则为二面角的平面角,因为,,,则在中,有,所以二面角的平面角的正切值为.解法二:以点为原点,建立如图所示的空间直角坐标系,则,设点,由得:,即,,,点,平面的一个法向量,又,,设平面的一个法向量为,则,令,则平面的一个法向量为.设二面角的平面角为,则,即,所以二面角的正切值为.【点睛】线线垂直的判定可由线面垂直得到,也可以由两条线所成的角为得到,而线面垂直又可以由面面垂直得到,解题中注意三种垂直关系的转化.空间中的角的计算,可以建立空间直角坐标系把角的计算归结为向量的夹角的计算,也可以构建空间角,把角的计算归结平面图形中的角的计算.20.(1);(2)见解析.【解析】
(1)设切点坐标为,然后根据可解得实数的值;(2)令,,然后对实数进行分类讨论,结合和的符号来确定函数的零点个数.【详解】(1),,设曲线与轴相切于点,则,即,解得.所以,当时,轴为曲线的切线;(2)令,,则,,由,得.当时,,此时,函数为增函数;当时,,此时,函数为减函数.,.①当,即当时,函数有一个零点;②当,即当时,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年中国尼龙66行业市场运行态势及发展趋势预测报告-智研咨询发布
- 《计算机网络基础与应用(第三版)》 课件 项目十 局域网服务器的架设
- 《PLC应用技术(西门子 下册)(第二版)》中职全套教学课件
- 2024年12月浙江嘉兴市海宁市儿童福利院公开招聘1人笔试历年典型考题(历年真题考点)解题思路附带答案详解
- 高考写作素材【知识精研】电影《哪吒2魔童闹海》作文素材运用
- Unit 7 Lets go to the museum Lesson 2 Grammar Past Simple【知识精研】KET剑桥英语
- 《KPM教学资料》课件
- 《风险企业价值评估》课件
- 2025至2031年中国双道烘银炉行业投资前景及策略咨询研究报告
- 2025至2030年中国高温高压液流染色机数据监测研究报告
- 小学数学课堂有效教学现状调查问卷分析报告
- 风险分级管控和隐患排查治理体系培训考试试题(附答案)
- 生鲜超市未来工作计划
- 食材配送服务方案投标方案(技术方案)
- 北京市大兴区2023-2024学年七年级下学期期中考试英语试卷
- 劳动合同薪酬与绩效约定书
- 消除医疗歧视管理制度
- JT-T-1180.2-2018交通运输企业安全生产标准化建设基本规范第2部分:道路旅客运输企业
- QCT848-2023拉臂式自装卸装置
- 2024交管12123驾照学法减分必考题库附答案
- 人教版八年级下册英语默写(单词 重点短语 重点句型)含答案
评论
0/150
提交评论