版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022山西省大同市铁路第二中学高二数学理月考试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.设数列的前n项和,则的值为(A)15
(B)
16
(C)
49
(D)64参考答案:A2.若,则等于(
)A.
B.
C. D.参考答案:A3.设f(x)=x2-6x+5,若实数x,y满足条件f(y)≤f(x)≤0,则的最大值为(
)A.5
B.3
C.1
D.9-4参考答案:A略4.在约束条件时,目标函数的最大值的变化范围是
..
.
参考答案:D略5.已知函数在时取得极值,则(
)A.
2
B.
3 C.
4 D.
5参考答案:D略6.在三角形ABC中,如果(a+b+c)(b+c-a)=3bc,那么A等于
(
)A.
B.
C.
D.参考答案:B7.为了在运行下面的程序之后得到输出16,键盘输入x应该是(
)
INPUTxIF
x<0
THENy=(x+1)*(x+1)ELSEy=(x-1)*(x-1)
ENDIFPRINTyENDA.3或-3
B.-5
C.5或-3
D.5或-5参考答案:D8.已知复数z满足,则z=(
)A、-5
B、5
C、-3
D、3参考答案:B9.已知抛物线y2=8x的焦点为F,直线y=k(x﹣2)与此抛物线相交于P,Q两点,则+=()A. B.1 C.2 D.4参考答案:A【考点】直线与圆锥曲线的关系.【专题】圆锥曲线的定义、性质与方程.【分析】由抛物线y2=8x可得焦点F(2,0),因此直线y=k(x﹣2)过焦点.把直线方程与抛物线方程联立得到根与系数的关系,利用弦长公式即可得出.【解答】解:由抛物线y2=8x可得焦点F(2,0),因此直线y=k(x﹣2)过焦点.设P(x1,y1),Q(x2,y2).,则,|FQ|=x2+2.联立.化为k2x2﹣(8+4k2)x+4k2=0(k≠0).∵△>0,∴,x1x2=4.∴+====.故选A.【点评】本题考查了抛物线的焦点弦问题,属于中档题.10.数列的一个通项公式为
(
)
A.
B.
C.
D.参考答案:B二、填空题:本大题共7小题,每小题4分,共28分11.在平面直角坐标系中,已知的顶点和,若顶点在双曲线的右支上,则
.参考答案:∵双曲线中,a=3,b=∴c==4,∴A、C恰好是双曲线的左右焦点,焦距|AC|=8根据双曲线的定义,得||AB|﹣|CB||=2a=6,∵顶点B在双曲线的右支上,∴|AB|﹣|CB|=6,△ABC中,根据正弦定理,得故.
12.平面上两点满足,设为实数,令表示平面上满足的所有点组成的图形,又令为平面上以为圆心、为半径的圆.则下列结论中,其中正确的有▲(写出所有正确结论的编号).①当时,为直线; ②当时,为双曲线;③当时,与圆交于两点; ④当时,与圆交于四点;⑤当时,不存在.
参考答案:①②⑤13.已知F1,F2是椭圆的两个焦点,若在椭圆上存在一点P,使F1PF2=120°,则椭圆离心率的范围是
▲
.参考答案:略14.空间四边形OABC中,,,,点M在OA上,且OM=2MA,N为BC的中点,则_________
(用,,表示)参考答案:略15.双曲线:的左右焦点分别为,过F1斜率为的直线与双曲线的左右两支分别交于点P、Q,若,则该双曲线的离心率是_________.参考答案:【分析】根据,由定义得,由余弦定理得的方程求解即可【详解】根据,由双曲线定义得,又直线的斜率为,故,中由余弦定理得故答案为【点睛】本题考查双曲线定义及几何性质,余弦定理,运用定义得是本题关键,是中档题16.下列四个命题中:①“等边三角形的三个内角均为60?”的逆命题;②“若k>0,则方程x2+2x﹣k=0有实根”的逆否命题;③“全等三角形的面积相等”的否命题;④“若ab≠0,则a≠0”的否命题.其中真命题的个数是.参考答案:①②【考点】命题的真假判断与应用.【分析】①,三个内角均为60°的三角形一定是等边三角形;②,原命题为真,其逆否命题与原命题同真假;③,不全等三角形的不面积也可以相等;④,“若ab=0,则a=0或b=0”.【解答】解:对于①“等边三角形的三个内角均为60°”的逆命题:三个内角均为60°的三角形是等边三角形,故为真命题;对于②,“若k>0,则方程x2+2x﹣k=0的△=4+4k>0,有实根”,∴原命题为真,其逆否命题与原命题同真假,故为真命题;对于③,“不全等三角形的面积可以相等”,故其否命题:不全等三角形的不面积相等,故为假命题;对于④,若ab=0,则a=0或b=0”,故为假命题.【点评】本题考查了命题的真假判定,属于基础题.17.已知直线l过点P(2,1),且与x轴、y轴的正半轴分别交于A、B两点,O为坐标原点,则三角形OAB面积的最小值为________.参考答案:4三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.已知a>0,设命题p:函数y=ax在R上单调递增;命题q:不等式ax2﹣ax+1>0对?x∈R恒成立,若p且q为假,p或q为真,求a的取值范围.参考答案:【考点】复合命题的真假.【分析】通过指数函数的单调性,一元二次不等式的解为R时判别式△的取值求出命题p,q下a的取值范围,而根据p且q为假,p或q为真知道p真q假,或p假q真,分别求出这两种情况下a的取值范围再求并集即可.【解答】解:若p真,则a>1;若q真,则△=a2﹣4a<0,解得0<a<4;∵p且q为假,p或q为真,∴命题p,q一真一假;∴当p真q假时,,∴a≥4;当p假q真时,,∴0<a≤1;综上,a的取值范围是(0,1]∪[4,+∞).19.已知椭圆C:+=1(a>b>0)经过点M(1,),其离心率为,设直线l:y=kx+m与椭圆C相交于A、B两点.(1)求椭圆C的方程;(2)已知直线l与圆x2+y2=相切,求证:OA⊥OB(O为坐标原点).参考答案:【考点】椭圆的简单性质.【专题】直线与圆;圆锥曲线的定义、性质与方程.【分析】(1)由离心率及a2=b2+c2,得a与b的关系式,再将点M的坐标代入椭圆方程中,求解关于a,b的二元二次方程组,即得a2,b2,从而得椭圆的标准方程;(2)根据圆心到直线的距离等于圆的半径,得k与m的等量关系,要证明OA⊥OB,只需证明?=0即可,从而将数量积转化为坐标运算,联立直线l与椭圆方程,利用韦达定理消去坐标,得到关于k,m的代数式,再利用前面k与m的等量关系即可达到目的.【解答】解:(1)由离心率e==,a2=b2+c2,a2=2b2,即有椭圆方程为+=1,将M(1,)代入,得b2=1,a2=2,则所求椭圆方程为+y2=1.(2)证明:因为直线l与圆x2+y2=相切,所以=,即m2=(1+k2),由,得(1+2k2)x2+4kmx+2m2﹣2=0.设点A、B的坐标分别为A(x1,y1)、B(x2,y2),则x1+x2=﹣,x1x2=,所以y1y2=(kx1+m)(kx2+m)=k2x1x2+km(x1+x2)+m2=,所以?=x1x2+y1y2=+==0,故OA⊥OB.【点评】本题考查椭圆的方程和性质,主要考查椭圆的离心率公式和方程的运用,联立直线方程,运用韦达定理,同时考查直线和圆相切的条件,属于中档题.20.(14分)已知圆,定点N(1,0),是圆上任意一点,线段的垂直平分线交于点,点的轨迹为曲线。
(Ⅰ)求曲线的方程;
(2)若直线与曲线相交于,两点(不是左右顶点),且以为直径的圆过椭圆的右顶点,求证:直线过定点,并求出该定点的坐标.参考答案:又,因为以为直径的圆过椭圆的右顶点,,即,,,7m2+16mk+4k2=0..解得:,,且均满足,当时,的方程为,直线过定点,与已知矛盾;当时,的方程为,直线过定点.所以,直线过定点,定点坐标为.21.函数是定义在上的减函数,且满足,(1)求f(1);(2)若f(x)+f(2-x)<2,求x的取值范围。参考答案:(1)令x=y=1得f(1)=0
(2)由f(x)在(0,+)减22.(本小题12分)某商场经销某商品,根据以往资料统计,顾客采用的付款期数
的分布列为123450.40.20.20.10.1商场经销一件该商品,采用1期付款,其利润为2
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 软件安全设计评估报告范本
- 浙江省丽水市青田县2023-2024学年五年级上学期英语期末试卷
- 石材固色剂知识培训课件
- 塑造五种心态培训课件4
- 年产6万吨饲用饼干粉和面包粉项目可行性研究报告写作模板-申批备案
- 二零二五年度地产公司建筑工程合同风险评估与防控策略3篇
- 礼仪知识培训课件
- 二零二五年度办公楼主体结构施工与智慧安防系统合同3篇
- 中国大陆自闭症干预方法研究综述
- Unit 9 Can you come to my party Section A 1a~1c 说课稿 -2024-2025学年人教版八年级英语上册
- 口腔颌面外科学 09颞下颌关节疾病
- 台达变频器说明书
- 2023年广东罗浮山旅游集团有限公司招聘笔试题库及答案解析
- DB11-T1835-2021 给水排水管道工程施工技术规程高清最新版
- 解剖篇2-1内脏系统消化呼吸生理学
- 《小学生错别字原因及对策研究(论文)》
- 北师大版七年级数学上册教案(全册完整版)教学设计含教学反思
- 智慧水库平台建设方案
- 系统性红斑狼疮-第九版内科学
- 全统定额工程量计算规则1994
- 粮食平房仓设计规范
评论
0/150
提交评论