版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022安徽省马鞍山市钟山高级职业中学高一数学理上学期期末试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.函数f(x)=x﹣ln|x|的图象为()A. B. C. D.参考答案:B【考点】函数的图象.【专题】作图题;数形结合;函数的性质及应用.【分析】易知当x<0时,f(x)=x﹣ln(﹣x)是增函数,从而利用排除法求得.【解答】解:当x<0时,f(x)=x﹣ln(﹣x)是增函数,故排除A,C,D;故选:B.【点评】本题考查了函数的性质的判断与应用,单调性表述了图象的变化趋势.2.已知等比数列的公比为正数,且,,则A.
B.
C.
D.参考答案:B略3.若函数的反函数在定义域内单调递增,则函数的图象大致是()
(A)
(B)
(C)
(D)参考答案:D由函数的反函数在定义域内单调递增,可得a>1,所以函数的图象在上单调递增,故选D
4.半径为的球在一个圆锥内部,它的轴截面是一个正三角形与其内切圆,则圆锥的全面积与球面面积的比是
(
)
A.2∶3
B.3∶2
C.4∶9
D.9∶4参考答案:D5.(5分)已知函数f(x)=sin(ωx+)(ω>0)的最小正周期为π,则该函数的图象() A. 关于点(,0)对称 B. 关于直线x=对称 C. 关于点(,0)对称 D. 关于直线x=对称参考答案:A考点: 函数y=Asin(ωx+φ)的图象变换.专题: 计算题.分析: 先根据最小正周期的值求出w的值确定函数的解析式,然后令2x+=kπ求出x的值,得到原函数的对称点,然后对选项进行验证即可.解答: 由函数f(x)=sin(ωx+)(ω>0)的最小正周期为π得ω=2,由2x+=kπ得x=,对称点为(,0)(k∈z),当k=1时为(,0),故选A点评: 本题主要考查正弦函数的最小正周期的求法和对称性.6.函数f(x)=ax﹣(a>0,a≠1)的图象可能是(
)A. B. C. D.参考答案:D【考点】函数的图象.【专题】函数的性质及应用.【分析】先判断函数的单调性,再判断函数恒经过点(﹣1,0),问题得以解决.【解答】解:当0<a<1时,函数f(x)=ax﹣,为减函数,当a>1时,函数f(x)=ax﹣,为增函数,且当x=﹣1时f(﹣1)=0,即函数恒经过点(﹣1,0),故选:D【点评】本题主要考查了函数的图象和性质,求出函数恒经过点是关键,属于基础题.7.已知定义在R上的函数f(x),若对于任意x1,x2∈R,且x1≠x2,都有x1f(x1)+x2f(x2)>x1f(x2)+x2f(x1),那么函数f(x)称为“Ω函数”.给出下列函数:①f(x)=cosx;②f(x)=2x;③f(x)=x|x|;④f(x)=ln(x2+1).其中“Ω函数”的个数是()A.1 B.2 C.3 D.4参考答案:B【考点】函数单调性的性质.【专题】函数思想;综合法;函数的性质及应用.【分析】根据条件可以得到,对于任意的x1,x2∈R,且x1≠x2,都有(x1﹣x2)[f(x1)﹣f(x2)]>0,从而得出f(x)在R上为增函数,这样根据余弦函数,指数函数,二次函数,以及对数函数,复合函数的单调性判断每个函数在R上的单调性,从而便可得出“Ω函数”的个数.【解答】解:对于任意x1,x2∈R,且x1≠x2,x1f(x1)+x2f(x2)>x1f(x2)+x2f(x1)恒成立;∴(x1﹣x2)[f(x1)﹣f(x2)]>0恒成立;∴f(x)在R上为增函数;①f(x)=cosx在R上没有单调性,∴该函数不是“Ω函数”;②f(x)=2x在R上为增函数,∴该函数是“Ω函数”;③;∴f(x)在[0,+∞)上单调递增,在(﹣∞,0)上单调递增,且02=﹣02;∴f(x)在R上为增函数,∴该函数是“Ω函数”;④令x2+1=t,t≥1,则y=lnt在[1,+∞)上单调递增,而t=x2+1在R上没有单调性;∴f(x)在R上没有单调性,∴该函数不是“Ω函数”;∴“Ω函数”的个数是2.故选:B.【点评】考查增函数的定义,余弦函数、指数函数、二次函数,以及对数函数和复合函数的单调性,含绝对值函数的处理方法:去绝对值号,分段函数单调性的判断.8.将函数的图象向右平移个单位长度,所得图象对应的函数解析式是A. B. C. D.参考答案:B【分析】利用三角函数图像平移原则,结合诱导公式,即可求解.【详解】函数的图象向右平移个单位长度得到.故选:B.【点睛】本题考查三角图像变换,诱导公式,熟记变换原则,准确计算是关键,是基础题.9.已知x1,x2是函数f(x)=e﹣x﹣|lnx|的两个不同零点,则x1x2的取值范围是()A.(0,) B.(,1] C.(1,e) D.(,1)参考答案:D解:令f(x)=0得e﹣x=|lnx|,作出y=e﹣x和y=|lnx|的函数图象如图所示:由图象可知,1<x2<e,∴x1x2>,又|lnx1|>|lnx2|,即﹣lnx1>lnx2,∴lnx1+lnx2<0,∴lnx1x2<0,∴x1x2<1.故选D.10.函数的定义域为()A.B.C.D.参考答案:B二、填空题:本大题共7小题,每小题4分,共28分11.若幂函数的图象过点,则
.参考答案:12.下列表示正确有
(1)
a;
(2);
(3);(4)
;
(5)
;参考答案:(3)(4)(5)14.若,则=
参考答案:
略14.已知分别是的角所对的边且,点是的内心,若,则__________参考答案:略15.若a为正实数,i为虚数单位,且||=2,则a=.参考答案:【考点】复数代数形式的乘除运算.【分析】根据复数的四则运算以及复数的模长公式进行求解即可.【解答】解:∵||=2,∴|﹣ai+1|=2,即,即a2=3,∵a为正实数,∴a=,故答案为:.16.已知,则
。参考答案:717.若
参考答案:
12三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.(12分)已知等差数列中,=29,,问这个数列的前多少项的和最大?并求最大值。参考答案:(方法不唯一,其他方法也可)由S20=S10得2a1+29d=0d=-2,an=a1+(n-1)d=-2n+31Sn==-n2+30n=-(n-15)2+225
∴当n=15时,Sn最大,最大值为225。19.解关于x的不等式:参考答案:原不等式可化为:
即
……2分当时,即,,原不等式的解集为
……3分当时,即,
,,原不等式的解集为
……6分
当时,即,
当时,
,原不等式的解集为
……8分当时,,原不等式的解集为
……10分当时,,原不等式的解集为
……12分20.设与是两个单位向量,其夹角为60°,且=2+,=﹣3+2.(1)求?;(2)求||和||;(3)求与的夹角.参考答案:考点:平面向量数量积的运算.专题:计算题;平面向量及应用.分析:(1)运用向量的数量积的定义和向量的平方即为模的平方,计算即可得到;(2)运用向量的平方即为模的平方,计算即可得到;(3)运用向量的夹角公式和夹角的范围,计算即可得到所求值.解答:解:(1)由与是两个单位向量,其夹角为60°,则=1×=,=(2+)?(﹣3+2)=﹣6+2+?=﹣6+2+=﹣;(2)||====,||====;(3)cos<,>===﹣,由于0≤<,>≤π,则有与的夹角.点评:本题考查平面向量的数量积的定义和性质,考查向量的平方即为模的平方,考查向量的夹角公式的运用,考查运算能力,属于基础题.21.已知函数f(x)=ax2+bx+1(a,b∈R).(Ⅰ)若f(﹣1)=0且对任意实数x均有f(x)≥0成立,求实数a,b的值;(Ⅱ)在(Ⅰ)的条件下,当x∈[﹣2,2]时,g(x)=f(x)﹣kx是单调函数,求实数k的取值范围.参考答案:【考点】函数恒成立问题;函数单调性的性质.【专题】计算题;综合题.【分析】(Ⅰ)由f(﹣1)=0,可得a﹣b+1=0即b=a+1,又对任意实数x均有f(x)≥0成立,可得恒成立,即(a﹣1)2≤0恒成立,从而可求出a,b的值;(Ⅱ)由(Ⅰ)可知f(x)=x2+2x+1,可得g(x)=x2+(2﹣k)x+1,由g(x)在x∈[﹣2,2]时是单调函数,可得,从而得出,解之即可得出k的取值范围.【解答】解:(Ⅰ)∵f(﹣1)=0,∴a﹣b+1=0即b=a+1,又对任意实数x均有f(x)≥0成立∴恒成立,即(a﹣1)2≤0恒成立∴a=1,b=2;(Ⅱ)由(Ⅰ)可知f(x)=x2+2x+1∴g(x)=x2+(2﹣k)x+1∵g(x)在x∈[﹣2,2]时是单调函数,∴∴,即实数k的取值范围为(﹣∞,﹣2]∪[6,+∞).【点评】本题考查了函数的恒成立
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 高考物理总复习专题十电磁感应第2讲法拉第电磁感应定律、自感、涡流练习含答案
- 广东省阳东广雅学校高二信息技术 三维动画制作教案
- 2024年学年七年级语文下册 第二单元 告别抒怀 第4课《告别昨天的我》教案2 新疆教育版
- 2024-2025学年高中化学 第3章 第2节 课时3 铁的重要化合物教案 新人教版必修1
- 2024年届九年级历史上册 第5课 为争取“民主”“共和”而战教案2 北师大版
- 2023六年级数学上册 二 比和比例 测量旗杆高度教案 冀教版
- 2023六年级数学下册 三 解决问题的策略第三课时 解决问题的策略(练习课)教案 苏教版
- 文书模板-中医师承关系合同书
- 高考地理一轮复习第十二章环境与发展第一节环境问题与可持续发展课件
- 生活水泵房管理制度
- 《巨人的花园》的课文原文
- 四位数乘四位数乘法题500道
- 林则徐课件完整版
- 扇形统计图整理和复习教案
- 华为人力资源管理体系精髓及启示
- 人体发育学课件
- 儿科护理学课程说课
- 《农村推行“四议两公开”工作法实施细则》
- 监理规范(新版)
- LY/T 2651-2016退化森林生态系统恢复与重建技术规程
- GB 6675.3-2014玩具安全第3部分:易燃性能
评论
0/150
提交评论