版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2021-2022学年湖北省黄冈市武穴鄂东中学高一数学文模拟试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.“”是“”的()A.充分而不必要条件
B.必要而不充分条件C.充分必要条件
D.既不充分也不必要条件参考答案:B略2.下列函数中,在其定义域内既是奇函数又是增函数的是()A.y=-log2x
B.y=x3+x
C.y=3x
D.y=-
参考答案:B略3.(4)若直线a∥直线b,且a∥平面,则b与平面的位置关系是(
)A、一定平行
B、不平行
C、平行或相交
D、平行或在平面内参考答案:D略4.已知集合U={1,2,3,4,5,6,7},A={2,4,5,7},B={3,4,5},则=(
)A.{1,6}
B.{4,5}C.{1,2,3,4,5,7}
D.{1,2,3,6,7}参考答案:D5.若偶函数在上是增函数,则下列关系式中成立的是(
)A.
B.C.
D.参考答案:
D
解析:6.已知角θ的终边过点P(﹣12,5),则cosθ=()A. B. C. D.参考答案:B【考点】任意角的三角函数的定义.【分析】利用任意角的三角函数的定义,求得cosθ的值.【解答】解:∵角θ的终边过点P(﹣12,5),则r=|OP|=13,∴cosθ===﹣,故选:B.7.三角形三内角A、B、C所对边分别为、、,且,,则△ABC外接圆半径为()A.10
B.8
C.6
D.5参考答案:D略8.三个数a=0.312,b=log20.31,c=20.31之间的大小关系为()A.a<c<b B.a<b<c C.b<a<c D.b<c<a参考答案:C【考点】不等式比较大小.【专题】函数的性质及应用.【分析】利用指数函数和对数函数的单调性即可得出.【解答】解:∵0<0.312<0.310=1,log20.31<log21=0,20.31>20=1,∴b<a<c.故选C.【点评】熟练掌握指数函数和对数函数的单调性是解题的关键.9.某公司2005~2010年的年利润x(单位:百万元)与年广告支出y(单位:百万元)的统计资料如表所示:年份200520062007200820092010利润x12.214.6161820.422.3支出y0.620.740.810.8911.11根据统计资料,则() A. 利润中位数是16,x与y有正线性相关关系 B. 利润中位数是18,x与y有负线性相关关系 C. 利润中位数是17,x与y有正线性相关关系 D. 利润中位数是17,x与y有负线性相关关系参考答案:C由题意,利润中位数是=17,而且随着利润的增加,支出也在增加,故x与y有正线性相关关系故选C.10.已知函数f(x)是定义在R上的偶函数,在(﹣∞,0]上有单调性,且f(﹣2)<f(1),则下列不等式成立的是()A.f(﹣1)<f(2)<f(3) B.f(2)<f(3)<f(﹣4) C.f(﹣2)<f(0)<f() D.f(5)<f(﹣3)<f(﹣1)参考答案:D【考点】抽象函数及其应用;奇偶性与单调性的综合.【分析】由已知可得函数f(x)在(﹣∞,0]上为增函数,结合函数f(x)是定义在R上的偶函数,可得答案.【解答】解:∵函数f(x)是定义在R上的偶函数,在(﹣∞,0]上有单调性,且f(﹣2)<f(1)=f(﹣1),故函数f(x)在(﹣∞,0]上为增函数,则f(5)=f(﹣5)<f(﹣3)<f(﹣1),故选:D二、填空题:本大题共7小题,每小题4分,共28分11.将函数的图象向右移个单位后再作关于轴对称的曲线,得到函数图象,,则=_______________.参考答案:2cosx12.已知全集,集合
则=
参考答案:略13.已知三角形的两边分别为4和5,它们的夹角的余弦值是方程2x2+3x-2=0的根,则第三边长是________.参考答案:14.函数f(x)=lg(4﹣x)+的定义域是.参考答案:(2,4)【考点】对数函数的定义域;函数的定义域及其求法.【专题】计算题;函数思想;综合法;函数的性质及应用.【分析】根据对数函数以及二次根式的性质得到关于x的不等式组,解出即可.【解答】解:由题意得:,解得:2<x<4,故答案为:(2,4).【点评】本题考查了求函数的定义域问题,考查对数函数二次根式的性质,是一道基础题.15.如果奇函数y=f(x)(x≠0),当x∈(0,+∞)时,f(x)=x﹣1,则使f(x﹣1)<0的x的取值范围是
.参考答案:(﹣∞,0)∪(1,2)【考点】其他不等式的解法.【专题】计算题;数形结合.【分析】由题意,可先研究出奇函数y=f(x)(x≠0)的图象的情况,解出其函数值为负的自变量的取值范围来,再解f(x﹣1)<0得到答案【解答】解:由题意x∈(0,+∞)时,f(x)=x﹣1,可得x>1时,函数值为正,0<x<1时,函数值为负又奇函数y=f(x)(x≠0),由奇函数的性质知,当x<﹣1时,函数值为负,当﹣1<x<0时函数值为正综上,当x<﹣1时0<x<1时,函数值为负∵f(x﹣1)<0∴x﹣1<﹣1或0<x﹣1<1,即x<0,或1<x<2故答案为(﹣∞,0)∪(1,2)【点评】本题考查利用奇函数图象的对称性解不等式,解题的关键是先研究奇函数y=f(x)函数值为负的自变量的取值范围,再解f(x﹣1)<0的x的取值范围,函数的奇函数的对称性是高考的热点,属于必考内容,如本题这样的题型也是高考试卷上常客16.下图为80辆汽车通过某一段公路时的时速的频率分布直方图,则时速大于60的汽车大约有____辆.参考答案:4817.方程lgx=lg12﹣lg(x+4)的解集为__________.参考答案:{2}考点:对数的运算性质.专题:计算题.分析:先根据对数的运算性质化简可得lg(x2+4x)=lg12,然后解一元二次方程,注意定义域,从而求出所求.解答:解:∵lgx=lg12﹣lg(x+4)∴lgx+lg(x+4)=lg12即lg=lg(x2+4x)=lg12∴x2+4x=12∴x=2或﹣6∵x>0∴x=2故答案为:{2}.点评:本题主要考查解对数方程的问题,以及对数的运算性质,这里注意对数的真数一定要大于0,属于基础题.三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.某同学用“五点法”画函数f(x)=Asin(ωx+φ)(x∈R,A>0,ω>0,|φ|<)在某一个周期的图象时,列表并填入的部分数据如下表:xx1x2x3ωx+φ0π2πAsin(ωx+φ)020﹣20(Ⅰ)求x1,x2,x3的值及函数f(x)的表达式;(Ⅱ)将函数f(x)的图象向左平移π个单位,可得到函数g(x)的图象,若直线y=k与函数y=f(x)g(x)的图象在[0,π]上有交点,求实数k的取值范围.参考答案:考点:函数y=Asin(ωx+φ)的图象变换;正弦函数的图象.专题:三角函数的图像与性质.分析:(Ⅰ)由φ=0,+φ=0,可解得ω,φ的值,由,,,可求x1,x2,x3的值,又由Asin()=2,可求A的值,即可求得函数f(x)的表达式;(Ⅱ)由函数y=Asin(ωx+φ)的图象变换可求g(x)=2cos(),y=f(x)g(x)=2sin(x﹣),结合范围x∈[0,π]时,可得x﹣∈[﹣,],利用正弦函数的图象和性质即可得解.解答: (本题满分为10分)解:(Ⅰ)由φ=0,+φ=0,可得,φ=﹣,由,,,可得:x1=,,,又因为Asin()=2,所以A=2.所以f(x)=2sin()…6分(Ⅱ)由f(x)=2sin()的图象向左平移π个单位,得g(x)=2sin()=2cos()的图象,所以y=f(x)g(x)=2×2sin()?cos()=2sin(x﹣).因为x∈[0,π]时,x﹣∈[﹣,],所以实数k的取值范围为:[﹣2,]…10分点评:本题主要考查了函数y=Asin(ωx+φ)的图象变换,正弦函数的图象和性质,属于基本知识的考查.19.某地有2000名学生参加数学学业水平考试,现将成绩(满分:100分)汇总,得到如图所示的频率分布表.(1)请完成题目中的频率分布表,并补全题目中的频率分布直方图;成绩分组频数频率[50,60]100
(60,70]
(70,80]800
(80,90]
(90,100]200
(2)将成绩按分层抽样的方法抽取150名同学进行问卷调查,甲同学在本次测试中数学成绩为95分,求他被抽中的概率.参考答案:【考点】频率分布直方图;列举法计算基本事件数及事件发生的概率.【专题】综合题;数形结合;数学模型法;概率与统计.【分析】(1)根据频率分布直方图,利用频率、频数与样本容量的关系,填写频率分布表,计算,补全频率分布直方图即可;(2)用分层抽样方法,该同学被抽中的概率是与每一个同学的几率相等,为.【解答】解:(1)完成题目中的频率分布表,如下;成绩分组频数频率[50,60]1000.05(60,70]6000.30(70,80]8000.40(80,90]3000.15(90,100]2000.10补全题目中的频率分布直方图,如下;(2)将成绩按分层抽样的方法抽取150名同学进行问卷调查,甲同学在本次测试中数学成绩为95分,他被抽中的概率为=0.075.【点评】本题考查了频率分布直方图的应用问题,也考查了古典概型的概率计算问题,是基础题目.20.(13分)海水受日月的引力,在一定的时候发生涨落的现象叫潮.一般地,早潮叫潮,晚潮叫汐.在通常情况下,船在涨潮时驶进航道,靠近码头;卸货后,在落潮时返回海洋.下面是某港口在某季节每天时间与水深(单位:米)的关系表:时刻0:003:006:009:0012:0015:0018:0021:0024:00水深10.013.09.97.010.013.010.17.010.0(1)请用一个函数来近似描述这个港口的水深y与时间t的函数关系;(2)一般情况下,船舶航行时,船底离海底的距离为5米或5米以上认为是安全的(船舶停靠时,船底只要不碰海底即可).某船吃水深度(船底离地面的距离)为6.5米.Ⅰ)如果该船是旅游船,1:00进港希望在同一天内安全出港,它至多能在港内停留多长时间(忽略进出港所需时间)?Ⅱ)如果该船是货船,在2:00开始卸货,吃水深度以每小时0.5米的速度减少,由于台风等天气原因该船必须在10:00之前离开该港口,为了使卸下的货物尽可能多而且能安全驶离该港口,那么该船在什么整点时刻必须停止卸货(忽略出港所需时间)?参考答案:考点: 在实际问题中建立三角函数模型.专题: 三角函数的求值.分析: (1)设出函数解析式,据最大值与最小值的差的一半为A;最大值与最小值和的一半为h;通过周期求出ω,得到函数解析式.(2)Ⅰ)据题意列出不等式,利用三角函数的周期性及单调性解三角不等式求出t的范围.Ⅱ)设f(x)=3sinx+10,x∈,g(x)=11.5﹣0.5(x﹣2)(x≥2)对它们进行比较从而得到答案.解答: (1)以时间为横坐标,水深为纵坐标,在直角坐标系中画出散点图.如图.根据图象,可考虑用函数y=Asin(ωx+φ)+h刻画水深与时间之间的对应关系.从数据和图象可以得出A=3,h=10,T=12,φ=0,由T==12,得ω=,所以这个港口水深与时间的关系可用y=3sint+10近似描述…(4分)(2)Ⅰ)由题意,y≥11.5就可以进出港,令sint=,如图,在区间内,函数y=3sint+10与直线y=11.5有两个交点,由sint=或,得xA=1,xB=5,由周期性得xC=13,xD=17,由于该船从1:00进港,可以17:00离港,所以在同一天安全出港,在港内停留的最多时间是16小时…(8分)Ⅱ)设在时刻x货船航行的安全水深为y,那么y=11.5﹣0.5(x﹣2)(x≥2).设f(x)=3sinx+10,x∈,g(x)=11.5﹣0.5(x﹣2)(x≥2)由f(6)=10>g(6)=9.5且f(7)=8.5<g(7)=9知,为了安全,货船最好在整点时刻6点之前停止卸货…(13分)点评:
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 定金合同范本
- 2024年度演艺经纪代理合同2篇
- 二零二四年度云计算服务定制与运维合同
- 二零二四年度电动折叠自行车购销协议3篇
- 短期劳动力雇佣合同04
- 高级定制服装生产与销售合同(04版)
- 二零二四年度社交电商模式创新与合作合同3篇
- 二零二四年度广告媒体投放合作协议
- 二零二四年度地下水监测井建设合同
- 二零二四年度技术转让合同with技术改进与后续支持
- 酒水厂家授权书范本
- 电梯安全风险管控清单表
- 课件数学北师大版一年级-《认识图形》说课
- 重庆十八中学2024届物理八上期末教学质量检测试题含解析
- 大数据营销 试卷2
- 9.1-电荷-课件(共22张PPT新版高中物理教材)
- 《音乐治疗》课程教学大纲
- 微信公众号迁移法人授权委托书的
- 21ZJ111 变形缝建筑构造
- 广东省医疗、预防、保健机构医师聘用证明(样表)
- 海水淡化处理技术
评论
0/150
提交评论