版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2021-2022学年浙江省杭州市滨江区职业中学高一数学理下学期期末试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.下列函数中,在[-1,1]上单调递减的是()A. B. C. D.参考答案:C【分析】根据一次函数单调性、对数函数定义域、指数函数单调性、二次函数单调性依次判断各个选项即可得到结果.【详解】当时,,此时函数单调递增,错误;的定义域为,错误;,则单调递减,正确;当时,单调递增,错误.本题正确选项:【点睛】本题考查判断函数的单调性,属于基础题.2.已知则方程所有实根的个数是(
)A.2
B.3
C.4
D.5参考答案:D略3.下列几何体中,每个几何体的三视图中有且仅有两个视图相同的是(
)
A.①②
B.①③
C.③④
D.②④参考答案:C略4.已知偶函数在区间单调递减,则满足的取值范围是(
)
参考答案:C略5.已知ABC和点M满足.若存在实数n使得成立,则n=(
)A.2
B.3
C.4
D.5参考答案:B6.如图是正方体的平面展开图,则在这个正方体中:①BM与ED平行②CN与BE是异面直线③CN与BM成60°角④DM与BN是异面直线以上四个命题中,正确的命题序号是()A.①②③ B.②④ C.③④ D.②③④参考答案:C【考点】空间中直线与直线之间的位置关系.【分析】根据恢复的正方体可以判断出答案.【解答】解:根据展开图,画出立体图形,BM与ED垂直,不平行,CN与BE是平行直线,CN与BM成60°,DM与BN是异面直线,故③④正确.故选:C【点评】本题考查了空间直线的位置关系,属于中档题.7.下列图象中不能表示函数的图象是
(
)A
B
C
D参考答案:D略8.奇函数y=f(x)在区间[3,5]上是增函数且最小值为2,那么y=f(x)在区间[﹣5,﹣3]上是()A.减函数且最小值为﹣2 B.减函数且最大值为﹣2C.增函数且最小值为﹣2 D.增函数且最大值为﹣2参考答案:D【考点】函数奇偶性的性质.
【专题】函数的性质及应用.【分析】根据奇函数在对称区间上单调性一致,最值相反,结合已知可得答案.【解答】解:∵奇函数在对称区间上单调性一致,最值相反,奇函数y=f(x)在区间[3,5]上是增函数且最小值为2,∴y=f(x)在区间[﹣5,﹣3]上是增函数且最大值为﹣2,故选:D【点评】本题考查的知识点是函数奇偶性的性质,难度不大,属于基础题.9.已知函数,R,则是(
)A.最小正周期为的奇函数
B.最小正周期为的奇函数C.最小正周期为的偶函数
D.最小正周期为的偶函数
参考答案:C10.若函数的定义域是
,则函数的定义域是(
)A.[-1,1]
B.[-1,1)
C.
D.(-1,1)参考答案:C二、填空题:本大题共7小题,每小题4分,共28分11.已知函数f(x)=﹣2sin(2x+φ)(|φ|<π),若(,)是f(x)的一个单调递增区间,则φ的取值范围为
.参考答案:[,]
【考点】由y=Asin(ωx+φ)的部分图象确定其解析式.【分析】令2kπ+≤2x+φ≤2kπ+,k∈z,求得kπ+﹣≤x≤kπ+﹣.再由≤kπ+﹣,且≥kπ+﹣,结合|φ|<π求得φ的取值范围.【解答】解:由题意可得,是函数y=2sin(2x+φ)的一个单调递减区间,令2kπ+≤2x+φ≤2kπ+,k∈z,求得kπ+﹣≤x≤kπ+﹣,故有≤kπ+﹣,且≥kπ+﹣,结合|φ|<π求得≤φ≤,故φ的取值范围为[,],故答案为[,].12.已知数列的前项和,则此数列的通项公式为
参考答案:13.函数f(x)=Asin(ωx+φ)(A>0,ω>0,φ∈[0,2π))的图象,如图所示,则f(2016)的值为
.参考答案:
【考点】由y=Asin(ωx+φ)的部分图象确定其解析式.【分析】根据三角函数的图象求出A,ω和φ的值,结合三角函数的解析式进行求解即可.【解答】解:由图象知A=3,=3﹣(﹣1)=4,即函数的周期T=8=,即ω=,由五点对应法得3ω+φ=3×+φ=π,即φ=,则f(x)=3sin(x+),则f(2016)=3sin(×2016+)=3sin(504π+)=3sin()=3×=,故答案为:【点评】本题主要考查三角函数值的计算,根据条件求出函数的解析式是解决本题的关键.14.设集合A={},B={x},且AB,则实数k的取值范围是
.参考答案:{}15.设函数f(lgx)的定义域为[0.1,100],则函数f()的定义域为.参考答案:[﹣2,4]【考点】对数函数的定义域.【分析】先由函数f(lgx)的定义域求出函数f(x)的定义域,然后求得函数f()的定义域.【解答】解:因为函数f(lgx)的定义域为[0.1,100],由0.1≤x≤100,得:﹣1≤lgx≤2,所以函数f(x)的定义域为[﹣1,2],再由,得:﹣2≤x≤4,所以函数f()的定义域为[﹣2,4].故答案为[﹣2,4].【点评】本题考查了对数函数的定义域,考查了复合函数定义域的求法,给出了函数f(x)的定义域为[a,b],求函数f[g(x)]的定义域,让g(x)∈[a,b],求解x即可,给出了f[g(x)]的定义域,求函数f(x)的定义域,就是求函数g(x)的值域,此题是基础题.16.已知函数的定义域为实数集,满足(是的非空真子集),若在上有两个非空真子集,且,则的值域为__________.参考答案:试题分析:当时,,所以,;当时,;当时,;故,即值域为,故答案为.考点:函数的值域及新定义问题.17.若对于正整数k,表示k的最大奇数因数,例如.设,则__________.参考答案:【分析】由g(k)表示k的最大奇数因数,所以偶数项的最大奇数因数和除2之后的奇数因数相同,所以将Sn分组,分成奇数项和偶数项的和,由等差数列的求和公式,整理即可得到所求.【详解】解:当n≥2时,Sn=g(1)+g(2)+g(3)+g(4)+…+g(2n﹣1)+g(2n)=[g(1)+g(3)+g(5)+…+g(2n﹣1)]+[g(2)+g(4)+…+g(2n)]=[1+3+5+…+(2n﹣1)]+[g(2×1)+g(2×2)+…+g(2×2n﹣1)]=+[g(1)+g(2)+…+g(2n﹣1)]=4n﹣1+Sn﹣1,于是Sn﹣Sn﹣1=4n﹣1,n≥2,n∈N*.又,所以=故答案为:.【点睛】本题考查新定义的理解和运用,考查分组求和和分类讨论思想方法,注意运用转化思想,考查化简整理的运算能力,属于难题.三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.设函数f(x)=log2(4x)?log2(2x),,(1)若t=log2x,求t取值范围;(2)求f(x)的最值,并给出最值时对应的x的值.参考答案:【考点】对数函数图象与性质的综合应用.【分析】(1)由对数函数的单调性,结合,我们易确定出t=log2x的最大值和最小值,进而得到t取值范围;(2)由已知中f(x)=log2(4x)?log2(2x),根据(1)的结论,我们可以使用换元法,将问题转化为一个二次函数在定区间上的最值问题,根据二次函数的性质易得答案.【解答】解:(1)∵∴即﹣2≤t≤2(2)f(x)=(log2x)2+3log2x+2∴令t=log2x,则,∴时,当t=2即x=4时,f(x)max=1219.某同学将“五点法”画函数f(x)=Asin(wx+φ)(w>0,|φ|<)在某一个时期内的图象时,列表并填入部分数据,如下表:wx+φ
0π2πx
Asin(wx+φ)05
﹣50(1)请将上述数据补充完整,填写在答题卡上相应位置,并直接写出函数f(x)的解析式;(2)将y=f(x)图象上所有点向左平移个单位长度,得到y=g(x)图象,求y=g(x)的图象离原点O最近的对称中心.参考答案:【考点】由y=Asin(ωx+φ)的部分图象确定其解析式;函数y=Asin(ωx+φ)的图象变换.【分析】(1)由五点作图法即可将数据补充完整,写出函数的解析式;(2)由函数y=Asin(ωx+φ)的图象变换可得g(x),解得其对称中心即可得解.【解答】解:(1)数据补充完整如下表:wx+φ
0π2πxAsin(wx+φ)050﹣50函数f(x)的解析式为:f(x)=5sin(2x﹣).(2)将y=f(x)图象上所有点向左平移个单位长度,得到y=g(x)=5sin[2(x+)﹣]=5sin(2x+).由2x+=kπ,k∈Z,可解得:x=﹣,k∈Z,当k=0时,可得:x=﹣.从而可得离原点O最近的对称中心为:(﹣,0).20.已知f(x)=x2﹣bx+c且f(1)=0,f(2)=﹣3(1)求f(x)的函数解析式;(2)求的解析式及其定义域.参考答案:【考点】函数解析式的求解及常用方法;二次函数的性质.【专题】计算题;方程思想;待定系数法;函数的性质及应用.【分析】(1)由题意可得f(1)=1﹣b+c=0,f(2)=4﹣2b+c=﹣3,解方程组可得;(2)由(1)得f(x)=x2﹣6x+5,整体代入可得函数解析式,由式子有意义可得定义域.【解答】解:(1)由题意可得f(1)=1﹣b+c=0,f(2)=4﹣2b+c=﹣3,联立解得:b=6,c=5,∴f(x)=x2﹣6x+5;(2)由(1)得f(x)=x2﹣6x+5,∴=,的定义域为:(﹣1,+∞)【点评】本题考查待定系数法求函数的解析式,属基础题.21.(16分)已知函数f(x)=x2﹣(a+1)x+3(x∈R,a∈R).(1)若a=1,写出函数f(x)单调区间;(2)设函数g(x)=log2x,且x∈[,4],若不等式f(g(x))≥恒成立,求a的取值范围;(3)已知对任意的x∈(0,+∞)都有lnx≤x﹣1成立,试利用这个条件证明:当a∈[﹣2,]时,不等式f(x)>ln(x﹣1)2恒成立.参考答案:考点: 利用导数求闭区间上函数的最值;函数恒成立问题;二次函数的性质.专题: 函数的性质及应用.分析: (1)原函数化简为f(x)=(x﹣1)2+2,根据二次函数的图象和性质即可得到单调区间;(2)先求出g(x)的值域,原不等式可化为t2﹣(a+1)t+3≥,构造函数h(t),根据二次函数的性质分类讨论,求出函数h(t)的最小值,再解不等式,即可得到答案;(3)分别根据当x>1或0<x<1,充分利用所给的条件,根据判别式即可证明.解答: (1)当a=1时,f(x)=x2﹣2x+3=(x﹣1)2+2,所以函数的单调减区间为(﹣∞,1),增区间为[1,+∞).)(2)因为x∈[,4],所以g(x)=log2x∈[﹣1,2],设t=g(x)则∈[﹣1,2],∴f(g(x))≥可化为t2﹣(a+1)t+3≥.令h(t)=t2﹣(a+1)t+3,其对称轴为t=,①当≤﹣1,即a≤﹣3时,h(t)在[﹣1,2]上单调递增,所以h(t)min=h(﹣1)=1+a+1+3=a+5,由a+5≥得a≥﹣7,所以﹣7≤a≤﹣3;
②当﹣1<<2即﹣3<a<3时,函数h(t)在(﹣1,)上递减,在(,2)上递增,所以h(t)min=h()=﹣+3.由﹣+3≥,解得﹣5≤a≤1.所以﹣3<a≤1.③当≥2,即a≥3时,函数h(t)在﹣1,2]递减,所以h(t)min=h(2)=5﹣2a,由5﹣2a≥,得a≤,舍去.综上:a∈[﹣7,1].(3)?当x>1时,ln(x﹣1)2=2ln(x﹣1),由题意x∈(0,+∞)都有lnx≤x﹣1成立,可得x>1时,2ln(x﹣1)≤2x﹣4,∴f(x)﹣(2x﹣4)=x2﹣(a+1)x+3﹣2x+4=x2﹣(a+3)x+7,当a∈[﹣2,]时,△=(a+3)2﹣28<0恒成立,所以f(x)﹣(2x﹣4)>0恒成立,即f(x)>2x﹣4恒成立,所以f(x)>ln(x﹣1)2恒成立.?当0<x<1时,ln(x﹣1)2=2ln(1﹣x),由题意可得2ln(1﹣x)≤﹣2x,f(x)﹣(﹣2x)=x2﹣(a﹣3)x+3,因为,△=(a﹣1)2﹣12,当当a∈[﹣2,]时,△<0恒成立,所以f(x)﹣(﹣2x)>0,即f(x)>﹣2x恒成立,所以f(x)>ln(x﹣1)2恒成立,综上,f(x)>ln(x﹣1)2恒成立.点评
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 上市公司运营总监招聘合同
- 环保公司黄金屋租赁合同
- 环保工程人工费施工合同
- 家庭园丁保姆合同范本
- 城市燃气管网安全合同样本
- 环保项目招投标核准申请
- 珠宝店销售顾问聘用合同样本
- 教育资源捐赠减免办法
- 美术培训机构教师聘用协议
- 市政排水工程诚信承诺书模板
- 妊娠剧吐课件
- 世界足球日介绍主题班会模板课件
- 电大学前教育本教育实习教学活动设计
- 河北省廊坊市各县区乡镇行政村村庄村名居民村民委员会明细
- 农业合作社盈余及盈余分配表
- 学校班级图书箱管理制度
- 写给老婆最催泪挽回感情的信范文(5篇)
- 煤化工企业设备设施风险分级管控清单参考模板范本
- 广东省中小学生学籍管理的实施细则
- 四年级上册数学课件-7.1 认 识 垂 线 |冀教版 (共18张PPT)
- IATF16949 年度内审审核方案
评论
0/150
提交评论