版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2021-2022学年河南省商丘市会亭中学高三数学文下学期期末试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.已知曲线,则下列说法正确的是()A.把上各点横坐标伸长到原来的倍,再把得到的曲线向右平移,得到曲线B.把上各点横坐标伸长到原来的倍,再把得到的曲线向右平移,得到曲线C.把向右平移,再把得到的曲线上各点横坐标缩短到原来的,得到曲线D.把向右平移,再把得到的曲线上各点横坐标缩短到原来的,得到曲线参考答案:B2.设i是虚数单位,则复数的虚部是()A.
B.
C.D.参考答案:B略3.已知全集U为实数集,集合A={x|x2﹣2x﹣3<0},B={x|y=ln(1﹣x)},则A∩(?UB)为()A.{x|1≤x<3} B.{x|x<3} C.{x|x≤﹣1} D.{x|﹣1<x<1}参考答案:A【考点】交、并、补集的混合运算.【分析】解不等式求出集合A,求函数定义域得出集合B,再根据交集与补集的定义写出A∩(?UB).【解答】解:全集U=R,集合A={x|x2﹣2x﹣3<0}={x|﹣1<x<3},B={x|y=ln(1﹣x)}={x|1﹣x>0}={x|x<1},则?UB={x|x≥1},所以A∩(?UB)={x|1≤x<3}.故选:A.【点评】本题考查了集合的基本运算与不等式和函数定义域的应用问题,是基础题目.4.如图,正方体ABCD-A1B1C1D1中,点E,F分别是AB,A1D1的中点,O为正方形A1B1C1D1的中心,则(
)A.直线EF,AO是异面直线 B.直线EF,BB1是相交直线C.直线EF与BC1所成的角为30° D.直线EF,BB1所成角的余弦值为参考答案:C易知四边形为平行四边形,所以直线,相交;直线,是异面直线;直线,所成角的余弦值为,故选项C正确.5.函数在区间上有零点,则实数的取值范围是(▲)。A.
B.
C.
D.参考答案:C略6.函数为奇函数,该函数的部分图像如图所示,、分别为最高点与最低点,并且,则该函数图象的一条对称轴为(
)A. B. C. D.参考答案:D7.已知函数,则(
)A.
0
B.1
C.
D.2参考答案:B8.(原创)(
)A.
B.
C.
D.参考答案:C略9.在中,若=2,b=,A=,则B等于(
)A.
B.
或
C.
D.或参考答案:D10.一个几何体的三视图及尺寸如图所示,则该几何体的体积为()A.24 B.30 C.48 D.72参考答案:A【考点】由三视图求面积、体积.【分析】由已知中三视图可得该几何体为一个以俯视图为底面的三棱锥,求出底面积和高后,代入锥体体积公式,可得答案.【解答】解:由已知中三视图可得该几何体为一个以俯视图为底面的三棱锥,其底面面积S=×6×6=18,其高h==4,故该几何体的体积V==24,故选:A.【点评】本题考查的知识点是由三视图,求体积,其中根据已知分析出几何体的形状是解答的关键.二、填空题:本大题共7小题,每小题4分,共28分11.若直线2ax﹣by+2=0(a>0,b>0)被圆x2+y2+2x﹣4y+1=0截得的弦长为4,则+的最小值是.参考答案:4考点: 基本不等式;直线与圆相交的性质.专题: 计算题.分析: 先求出圆心和半径,由弦长公式求得圆心到直线2ax﹣by+2=0的距离d=0,直线2ax﹣by+2=0经过圆心,可得a+b=1,代入式子再利用基本不等式可求式子的最小值.解答: 解:圆x2+y2+2x﹣4y+1=0即(x+1)2+(y﹣2)2=4,圆心为(﹣1,2),半径为2,设圆心到直线2ax﹣by+2=0的距离等于d,则由弦长公式得2=4,d=0,即直线2ax﹣by+2=0经过圆心,∴﹣2a﹣2b+2=0,a+b=1,则+=+=2++≥2+2=4,当且仅当a=b时等号成立,故式子的最小值为4,故答案为4.点评: 本题考查直线和圆的位置关系,弦长公式以及基本不等式的应用.12.若,则的定义域为_____________________.参考答案:13.设G为△ABC的重心,若,,则AB+AC的最大值为
.参考答案:
14.小王同学有本不同的语文书和本不同的英语书,从中任取本,则语文书和英语书各有本的概率为_____________(结果用分数表示)。参考答案:中任取本,有种,语文和英语各有1本有种,所以从中任取本,则语文书和英语书各有本的概率为。15.已知某几何体的三视图如图所示,这该几何体的体积为
,表面积为
.参考答案:288,336.考点:由三视图求面积、体积.专题:空间位置关系与距离.分析:根据三视图得出三视图得出该几何体是放倒的直三棱柱,利用给出的数据的体积,面积求解.解答: 解:根据三视图得出该几何体是放倒的直三棱柱.该几何体的体积为8×6×12=288,该几何体的表面积为12×(6+8)+2×+12×=12×14+48+120=336故答案为;288,336点评:本题考查了空间几何体的三视图运用,关键是确定几何体的直观图,根据几何体的性质判断直线的位置关系,属于中档题.16.参考答案:17.已知,,若,则
.参考答案:1三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.在△ABC中,a,b,c分别为角A,B,C的对边,A为锐角,已知向量=(1,cos),=(2sin,1-cos2A),且∥.(1)若a2-c2=b2-mbc,求实数m的值;(2)若a=,求△ABC面积的最大值,以及面积最大时边b,c的大小.参考答案:解:(Ⅰ)由得,所以……2分又角为锐角,
……4分而可变形为
……5分即
ks5u
……6分(Ⅱ)由(Ⅰ)知,又
……7分即
……9分故
……11分当且仅当时的面积有最大值
……14分19.如图1-4所示,四棱锥P-ABCD中,PA⊥底面ABCD,PA=,BC=CD=2,∠ACB=∠ACD=.(1)求证:BD⊥平面PAC;(2)若侧棱PC上的点F满足PF=7FC,求三棱锥P-BDF的体积.参考答案:略20.△ABC中,角A,B,C所对的边分别为a,b,c.已知a=3,cosA=,B=A+.(Ⅰ)求b的值;(Ⅱ)求△ABC的面积.参考答案:考点:正弦定理.专题:解三角形.分析:(Ⅰ)利用cosA求得sinA,进而利用A和B的关系求得sinB,最后利用正弦定理求得b的值.(Ⅱ)利用sinB,求得cosB的值,进而根两角和公式求得sinC的值,最后利用三角形面积公式求得答案.解答: 解:(Ⅰ)∵cosA=,∴sinA==,∵B=A+.∴sinB=sin(A+)=cosA=,由正弦定理知=,∴b=?sinB=×=3.(Ⅱ)∵sinB=,B=A+>∴cosB=﹣=﹣,sinC=sin(π﹣A﹣B)=sin(A+B)=sinAcosB+cosAsinB=×(﹣)+×=,∴S=a?b?sinC=×3×3×=.点评:本题主要考查了正弦定理的应用.解题过程中结合了同角三角函数关系,三角函数恒等变换的应用,注重了基础知识的综合运用.21.如图1所示,直角梯形ABCD,∠ADC=90°,AB∥CD,AD=CD=AB=2,点E为AC的中点,将△ACD沿AC折起,使折起后的平面ACD与平面ABC垂直(如图2),在图2所示的几何体D﹣ABC中.(1)求证:BC⊥平面ACD;(2)点F在棱CD上,且满足AD∥平面BEF,求几何体F﹣BCE的体积.参考答案:【考点】棱柱、棱锥、棱台的体积;直线与平面垂直的判定.【专题】空间位置关系与距离;空间角.【分析】(1)由题意知,AC=BC=2,从而由勾股定理得AC⊥BC,取AC中点E,连接DE,则DE⊥AC,从而ED⊥平面ABC,由此能证明BC⊥平面ACD.(2)取DC中点F,连结EF,BF,则EF∥AD,三棱锥F﹣BCE的高h=BC,S△BCE=S△ACD,由此能求出三棱锥F﹣BCE的体积.【解答】(1)证明:在图1中,由题意知,AC=BC=2,∴AC2+BC2=AB2,∴AC⊥BC取AC中点E,连接DE,则DE⊥AC,又平面ADC⊥平面ABC,且平面ADC∩平面ABC=AC,DE?平面ACD,从而ED⊥平面ABC,∴ED⊥BC又AC⊥BC,AC∩ED=E,∴BC⊥平面ACD.(2)解:取DC中点F,连结EF,BF,∵E是AC中点,∴EF∥AD,又EF?平面BEF,AD?平面BEF,∴AD∥平面BEF,由(1)知,BC为三棱锥B﹣ACD的高,∵三棱锥F﹣BCE的高h=BC=2=,S△BCE=S△ACD=×2×2=1,所以三棱锥F﹣BCE的体积为:VF﹣BCE==×1×=.【点评
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- PHP软件开发程序员岗位职责
- 重庆人文科技学院《教育应用写作》2022-2023学年第一学期期末试卷
- 2024年秋上海开放大学行政组织学记分作业1-3
- 重庆财经学院《软件项目管理》2022-2023学年期末试卷
- 2021一级消防工程师真题
- 重庆财经学院《新媒体运营》2022-2023学年第一学期期末试卷
- 茶叶产业可研究报告
- 茶具设计课题研究报告
- 重庆财经学院《高级数字摄像与编辑》2022-2023学年第一学期期末试卷
- 重庆财经学院《电子商务平台数据分析》2022-2023学年第一学期期末试卷
- 四年级上册数学课件北师大版第1课时 去图书馆
- 五年级家长会班主任ppt
- 智能控制技术教学讲义课件
- 大型拌合站建设验收表
- 粤信签小程序操作使用说明
- 产品周转防护管理基础规范
- XX大学学生中文成绩单(智能车辆工程专业)
- 开展因私出国境管理工作的自查报告
- 班组长竞选表
- 思想道德与法治课件:第六章 第三节 维护宪法权威
- 学院 宿舍楼安全现状评价报告
评论
0/150
提交评论