版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2021-2022学年河北省邢台市清河县第三中学高二数学理模拟试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.已知圆分别是圆上的动点,为轴上的动点,则的最小值为(
). . . .参考答案:A略2.在“唱响内江”选拔赛中,甲、乙两位歌手的5次得分情况如茎叶图所示,记甲、乙两人的平均得分分别、,则下列判断正确的是()A.<,乙比甲成绩稳定 B.<,甲比乙成绩稳定C.>,甲比乙成绩稳定 D.>,乙比甲成绩稳定参考答案:A【考点】茎叶图;众数、中位数、平均数.【专题】概率与统计.【分析】根据平均数的公式进行求解,结合数据分布情况判断稳定性【解答】解:由茎叶图可知=(77+76+88+90+94)=,=(75+86+88+88+93)==86,则<,乙的成绩主要集中在88附近,乙比甲成绩稳定,故选:A【点评】本题主要考查茎叶图的应用,根据平均数和数据的稳定性是解决本题的关键.3.等差数列中,,则=(
). . . .参考答案:C略4.在等差数列中,已知则等于(
)
A.40
B.42
C.43
D.45参考答案:B5.观察,,,由归纳推理可得:若定义在R上的函数f(x)满足,记g(x)为f(x)的导函数,则g(-x)=A.f(x) B.-f(x) C.g(x) D.-g(x)参考答案:D由归纳推理可知偶函数的导数是奇函数,因为是偶函数,则是奇函数,所以,应选答案D。6.函数(e为自然对数的底数)的图象可能是(
)
参考答案:C函数是偶函数,排除,当,7.某校为了提倡素质教育,丰富学生们的课外活动分别成立绘画,象棋和篮球兴趣小组,现有甲,乙,丙、丁四名同学报名参加,每人仅参加一个兴趣小组,每个兴趣小组至少有一人报名,则不同的报名方法有(
)A.12种 B.24种 C.36种 D.72种参考答案:C试题分析:由题意可知,从4人中任选2人作为一个整体,共有种,再把这个整体与其他3人进行全排列,对应3个活动小组,有种情况,所以共有种不同的报名方法,故选C.考点:排列、组合中的分组、分配问题.8.若实数、满足,且的最小值为,则常数的值为(
)A.2
B.
C.
D.参考答案:D9.若实数成等比数列,非零实数分别为与,与的等差中项,则下列结论正确的是
A.
B.
C.
D.参考答案:B10.已知条件,条件,则是的(
)A.充分不必要条件
B.必要不充分条件C.充要条件
D.既不充分也不必要条件
参考答案:A略二、填空题:本大题共7小题,每小题4分,共28分11.过点且与直线平行的直线方程是
参考答案:略12.已知,则f(﹣12)+f(14)=
.参考答案:2【考点】函数的值.【分析】先求出f(﹣12)=1+ln(),f(14)=1+ln(),由此利用对数性质能求出f(﹣12)+f(14)的值.【解答】解:∵,∴f(﹣12)=1+ln(+12+1)=1+ln(),f(14)=1+ln(﹣14+1)=1+ln(),∴f(﹣12)+f(14)=2+[ln()+ln(﹣13)]=2+ln1=2.故答案为:2.13.将5名志愿者分成4组,其中一组为2人,其余各组各1人,到4个路口协助交警执勤,则不同的分配方法有
种.(用数字作答)参考答案:24014.设[x]表示不超过x的最大整数,如[1.5]=1,[﹣1.5]=﹣2.若函数(a>0,a≠1),则g(x)=[f(x)﹣]+[f(﹣x)﹣]的值域为.参考答案:{0,﹣1}【考点】函数的值域.【分析】先求出函数f(x)的值域,然后求出[f(x)﹣]的值,再求出f(﹣x)的值域,然后求出[f(﹣x)﹣]的值,最后求出g(x)=[f(x)﹣]+[f(﹣x)﹣]的值域即可.【解答】解:=∈(0,1)∴f(x)﹣∈(﹣,)[f(x)﹣]=0或﹣1∵f(﹣x)=∈(0,1)∴f(﹣x)﹣∈(,)则[f(﹣x)﹣]=﹣1或0∴g(x)=[f(x)﹣]+[f(﹣x)﹣]的值域为{0,﹣1}故答案为:{0,﹣1}15.已知圆C的圆心与点P(﹣2,1)关于直线y=x+1对称.直线3x+4y﹣11=0与圆C相交于A,B两点,且|AB|=6,则圆C的方程为.参考答案:x2+(y+1)2=18【考点】直线与圆的位置关系.【分析】要求圆C的方程,先求圆心,设圆心坐标为(a,b),根据圆心与P关于直线y=x+1对称得到直线PC垂直与y=x+1且PC的中点在直线y=x+1上分别列出方程①②,联立求出a和b即可;再求半径,根据垂径定理得到|AB|、圆心到直线AB的距离及圆的半径成直角三角形,根据勾股定理求出半径.写出圆的方程即可.【解答】解:设圆心坐标C(a,b),根据圆心与P关于直线y=x+1对称得到直线CP与y=x+1垂直,而y=x+1的斜率为1,所以直线CP的斜率为﹣1即=﹣1化简得a+b+1=0①,再根据CP的中点在直线y=x+1上得到=+1化简得a﹣b﹣1=0②联立①②得到a=0,b=﹣1,所以圆心的坐标为(0,﹣1);圆心C到直线AB的距离d==3,|AB|=3所以根据勾股定理得到半径,所以圆的方程为x2+(y+1)2=18.故答案为:x2+(y+1)2=1816.在区间[﹣2,4]上随机地取一个数x,若x满足|x|≤m的概率为,则m=.参考答案:3【分析】画出数轴,利用x满足|x|≤m的概率为,直接求出m的值即可.【解答】解:如图区间长度是6,区间[﹣2,4]上随机地取一个数x,若x满足|x|≤m的概率为,所以m=3.故答案为:3.17.在等比数列{an}中,若=.参考答案:2三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.已知由甲、乙两位男生和丙、丁两位女生组成的四人冲关小组,参加由安徽卫视推出的大型户外竞技类活动《男生女生向前冲》.活动共有四关,若四关都闯过,则闯关成功,否则落水失败.设男生闯过一至四关的概率依次是,,,,女生闯过一至四关的概率依次是,,,.(Ⅰ)求男生甲闯关失败的概率;(Ⅱ)设X表示四人冲关小组闯关成功的人数,求随机变量X的分布列和期望.参考答案:【考点】CH:离散型随机变量的期望与方差;CG:离散型随机变量及其分布列.【分析】(Ⅰ)利用对立事件计算“男生甲闯关失败”的概率;(Ⅱ)计算“一位女生闯关成功”的概率,得出变量X的所有可能取值,计算对应的概率值,写出X的分布列,计算数学期望值.【解答】解:(Ⅰ)记“男生甲闯关失败”为事件A,则“男生甲闯关成功”为事件,∴P(A)=1﹣P()=1﹣×××=1﹣=;(Ⅱ)记“一位女生闯关成功”为事件B,则P(B)=×××=,随机变量X的所有可能取值为0,1,2,3,4;且P(X=0)=×=,P(X=1)=???+???=,P(X=3)=???+???=,P(X=4)=×=,P(X=2)=1﹣=;∴X的分布列为:X01234P∴数学期望为E(X)=0×+1×+2×+3×+4×=.19.已知点,为椭圆上的两点,是以为直角顶点的直角三角形.(I)当时,求线段的中垂线在轴上截距的取值范围.(II)能否为等腰三角形?若能,这样的三角形有几个?参考答案:(1)(2)时,有3个;时,有1个略20.已知,,,试比较与的大小。参考答案:,当时,,所以;当时,,所以;当时,,所以略21.如图,直二面角D﹣AB﹣E中,四边形ABCD是边长为2的正方形,AE=EB,F为CE上的点,且BF⊥平面ACE.(Ⅰ)求证:AE⊥平面BCE;(Ⅱ)求二面角B﹣AC﹣E的余弦值;(Ⅲ)求点D到平面ACE的距离.参考答案:【考点】用空间向量求平面间的夹角;直线与平面垂直的判定;点、线、面间的距离计算.【分析】(Ⅰ)欲证AE⊥平面BCE,由题设条件知可先证BF⊥AE,CB⊥AE,再由线面垂直的判定定理得出线面垂直即可;(Ⅱ)求二面角B﹣AC﹣E的正弦值,需要先作角,连接BD交AC交于G,连接FG,可证得∠BGF是二面B﹣AC﹣E的平面角,在△BFG中求解即可;(Ⅲ)由题设,利用由VD﹣ACE=VE﹣ACD,求点D到平面ACE的距离.【解答】解:(Ⅰ)∵BF⊥平面ACE.∴BF⊥AE∵二面角D﹣AB﹣E为直二面角.且CB⊥AB.∴CB⊥平面ABE∴CB⊥AE∵BF∩CB=B∴AE⊥平面BCE(Ⅱ)连接BD交AC交于G,连接FG∵正方形ABCD边长为2.∴BG⊥AC,BG=∵BF⊥平面ACE.由三垂线定理的逆定理得FG⊥AC.∴∠BGF是二面B﹣AC﹣E的平面角∵AE⊥平面BCE,∴AE⊥EC又∵AE=EB,∴在等腰直角三角形AEB中,BE=又∵Rt△BCE中,EC=∴BF==∴Rt△BFG中sin∠BGF=
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《先天性心脏病PDA》课件
- 《通信铁塔工程》课件
- 《尚有限责任公司》课件
- 与医疗护理员的沟通实践刘慧卿副主任护师护患沟通护患关系护士培训
- 项目二居村务治理
- 人力资源的规划与管理
- 重庆市江津中学、铜梁中学、长寿中学等七校联盟2021届高三下学期第三次模拟考试化学试题
- 元旦晚会策划活动方案
- 《退休养老规划》课件
- 《奥迪培训资料》课件
- 呼吸重症医学学习班主持稿
- 《人体内脏》教学课件
- 医院周转宿舍建设项目可行性研究报告
- (完整版)露天参考资料矿山安全标准化记录表格
- YD∕T 5060-2019 通信设备安装抗震设计图集
- 公司内部审批权限一览表
- 2020译林版高中英语选择性必修三单词表
- 脾破裂的超声诊断ppt课件
- 急性脑梗机械取栓PPT课件
- 淋巴瘤病理规范化诊断专家共识
- 能力分类卡和可迁移技能表
评论
0/150
提交评论