




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2021-2022学年河北省石家庄市东卓宿中学高二数学文模拟试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.给出下列命题:①分别和两条异面直线AB、CD同时相交的两条直线AC、BD一定是异面直线②同时与两条异面直线垂直的两直线不一定平行③斜线b在面α内的射影为c,直线a⊥c,则a⊥b④有三个角为直角的四边形是矩形,其中真命题是(
)参考答案:①2.若平面的法向量为,平面的法向量为,则平面与夹角的余弦是A.
B.
C.
D.-参考答案:A3.某地一年内的气温(单位:℃)与时刻(单位:时)之间的关系如图(1)所示,令表示时间段内的温差(即时间段内最高温度与最低温度的差),与之间的函数关系用下列图表示,则正确的图像大致是(
)参考答案:D略4.直线y=kx+3与圆(x-2)2+(y-3)2=4相交于M,N两点,若|MN|≥2,则k的取值范围是(
)参考答案:B略5.经过点且与双曲线有共同渐近线的双曲线方程为(
) A. B. C. D.参考答案:A略6.等差数列的公差不为零,首项,是和的等比中项,则数列的前项之和是(
)A.
B.
C.
D.参考答案:D7.圆x2+y2﹣2x﹣1=0关于直线2x﹣y+3=0对称的圆的方程是()A.(x+3)2+(y﹣2)2= B.(x﹣3)2+(y+2)2= C.(x+3)2+(y﹣2)2=2 D.(x﹣3)2+(y+2)2=2参考答案:C【考点】关于点、直线对称的圆的方程.【分析】先求圆心和半径,再去求对称点坐标,可得到圆的标准方程.【解答】解:圆x2+y2﹣2x﹣1=0?(x﹣1)2+y2=2,圆心(1,0),半径,关于直线2x﹣y+3=0对称的圆半径不变,排除A、B,两圆圆心连线段的中点在直线2x﹣y+3=0上,C中圆(x+3)2+(y﹣2)2=2的圆心为(﹣3,2),验证适合,故选C【点评】本题是选择题,采用计算、排除、验证相结合的方法解答,起到事半功倍的效果.8.下列运算不属于我们所讨论算法范畴的是()A.已知圆的半径求圆的面积B.随意抽4张扑克牌算到二十四点的可能性C.已知坐标平面内两点求直线方程D.加减乘除法运算法则参考答案:B9.已知空间四边形ABCD中,G为CD的中点,则等于(A)
(B)
(C)
(D)参考答案:A略10.已知AC、BD分别为圆O:x2+y2=4的两条垂直于坐标轴的弦,且AC、BD相交于点M(1,),则四边形ABCD的面积为()A.2 B.3 C. D.参考答案:A【考点】直线与圆的位置关系.【专题】计算题;方程思想;综合法;直线与圆.【分析】求出|AC|,|BD|,代入面积公式S=?|AC||BD|,即可求出四边形ABCD的面积.【解答】解:由题意圆心O到AC、BD的距离分别为、1,∴|AC|=2=2,|BD|==2,∴四边形ABCD的面积为:S=?|AC|(|BM|+|MD|)=?|AC||BD|==2,故选:A.【点评】此题考查四边形ABCD的面积.解答关键是四边形面积可用S=?|AC||BD|来计算.二、填空题:本大题共7小题,每小题4分,共28分11.函数的值域是________.参考答案:略12.一个几何体的三视图如图所示:其中,正视图中大三角形的边长是2的正三角形,俯视图为正六边形,那么该几何体几的体积为
;参考答案:略13.如图,第一个多边形是由正三角形“扩展”而来,第二个多边形是由正四边形“扩展”而来,…,如此类推,设由正n边形“扩展“而来的多边形的边数记为an.则+++…+=_________.参考答案:14.已知三个球的半径,,满足,则它们的表面积,,,满足的等量关系是___________参考答案:15.在北纬45°圈上的甲、乙两地,甲在东经30°,乙在西经60°处,若地球半径为R,则甲、乙两地的球面距离是
参考答案:16.《中国诗词大会》节目组决定把《将进酒》、《山居秋暝》、《望岳》、《送杜少府之任蜀州》和另外确定的两首诗词排在后六场,并要求《将进酒》与《望岳》相邻,且《将进酒》排在《望岳》的前面,《山居秋暝》与《送杜少府之任蜀州》不相邻,且均不排在最后,则后六场开场诗词的排法有____种.(用数字作答)参考答案:36【分析】根据题意,分2步分析:①将《将进酒》与《望岳》捆绑在一起和另外确定的两首诗词进行全排列,②再将《山居秋暝》与《送杜少府之任蜀州》插排在3个空里(最后一个空不排),由分步计数原理计算可得答案.【详解】根据题意,分2步分析:①将《将进酒》与《望岳》捆绑在一起和另外确定两首诗词进行全排列,共有种排法,②再将《山居秋暝》与《送杜少府之任蜀州》插排在3个空里(最后一个空不排),有种排法,则后六场的排法有=36(种),故答案为:36.【点睛】(1)本题主要考查排列组合的综合应用,意在考查学生对这些知识的掌握水平和分析推理能力.(2)排列组合常见解法有:一般问题直接法、相邻问题捆绑法、不相邻问题插空法、特殊对象优先法、等概率问题缩倍法、至少问题间接法、复杂问题分类法、小数问题列举法.17.有7张卡片分别写有数字1,1,1,2,2,3,4,从中任取4张,可排出不同的四位数个数为(
)A.78 B.102 C.114 D.120参考答案:C分析:根据题意,分四种情况讨论:①取出四张卡片中没有重复数字,即取出四张卡片中的数字为1,2,3,4;②取出四张卡片中4有2个重复数字,则2个重复的数字为1或2;③若取出的四张卡片为2张1和2张2;④取出四张卡片中有3个重复数字,则重复数字为1,分别求出每种情况下可以排出四位数的个数,由分类计数原理计算可得结论.详解:根据题意,分四种情况讨论:①取出四张卡片中没有重复数字,即取出四张卡片中的数字为1,2,3,4;此时有种顺序,可以排出24个四位数.②取出四张卡片中4有2个重复数字,则2个重复的数字为1或2,若重复的数字为1,在2,3,4中取出2个,有种取法,安排在四个位置中,有种情况,剩余位置安排数字1,可以排出个四位数同理,若重复的数字为2,也可以排出36个重复数字;③若取出的四张卡片为2张1和2张2,在4个位置安排两个1,有种情况,剩余位置安排两个2,则可以排出个四位数;④取出四张卡片中有3个重复数字,则重复数字为1,在2,3,4中取出1个卡片,有种取法,安排在四个位置中,有种情况,剩余位置安排1,可以排出个四位数,则一共有个四位数,故选C.点睛:本题主要考查分类计数原理与分步计数原理及排列组合的应用,属于难题.有关排列组合的综合问题,往往是两个原理及排列组合问题交叉应用才能解决问题,解答这类问题理解题意很关键,一定多读题才能挖掘出隐含条件.解题过程中要首先分清“是分类还是分步”、“是排列还是组合”,在应用分类计数加法原理讨论时,既不能重复交叉讨论又不能遗漏,这样才能提高准确率.三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.设f(x)是定义在R上的偶函数,在区间(-∞,0)上单调递增,且满足f(-a2+2a-5)<f(2a2+a+1),求实数a的取值范围.参考答案:解:∵为R上的偶函数,
∵在区间上单调递增,而偶函数图象关于y轴对称,
∴在区间(0,+∞)上单调递减,
∴实数a的取值范围是(-4,1).略19.(本小题14分)(1)求边所在的直线方程;(2)求边上的中线所在的直线的方程。参考答案:(1)∵
------(3分)
∴
即:
----------(4分)(2)设点的坐标为,根据中点坐标公式可得
即
------------(2分)
∵
----------------(3分)
∴
即:-
----------------------------------(4分)20.已知函数,设曲线在与轴交点处的切线为,函数的导数的图像关于直线对称,求函数的解析式.参考答案:略21.设M、N为抛物线C:y=x2上的两个动点,过M、N分别作抛物线C的切线l1、l2,与x轴分别交于A、B两点,且l1与l2相交于点P,若|AB|=1.(1)求点P的轨迹方程;(2)求证:△MNP的面积为一个定值,并求出这个定值.参考答案:略22.已知复数(i是虚数单位,),且为纯虚数(是z的共轭复数).(1)设复数,求;(2)设复数,且复数所对应的点在第四象限,求实数a的取值范围.参考答案:(1);(2).分析:根据复数的概念及其分类,求解.(1)求得,再根据复数的模的计算公式,即可求解;(2)由(1)可求得,根据复数对应的点位于第一象限,列出方程组,即可求解实数的取值范围.详解:∵z=1+mi,∴.∴.又∵为纯虚数,∴,解得m=﹣3.∴z=1﹣3i.
(1),
∴;(2)∵z=1﹣3
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 设备风险评估管理制度
- 设计单位业务管理制度
- 设计规章制度管理制度
- 诊所中医医师管理制度
- 诊所收费票据管理制度
- 试剂耗材入库管理制度
- 财务管理公司管理制度
- 财富顾问薪金管理制度
- 货架汽配仓库管理制度
- 货物道路运输管理制度
- 翻新沙发合同模板
- 客户投诉数据分析及应对策略
- 临床常见操作-灌肠
- 工程施工分包协议书
- 2024年中国流行T恤市场调查研究报告
- 《火灾调查 第2版》 课件 第5-7章 火灾调查分析、放火火灾调查、电气火灾调查
- 医院物业保洁服务方案(技术方案)
- 2024年山东省烟台市中考生物试题卷(含答案解析)
- 山东省烟台市牟平区(五四制)2023-2024学年八年级下学期期末考试数学试题
- 国开机考答案9-人文英语1(闭卷)
- 上海市徐汇区2023-2024学年七年级下学期数学期末练习卷
评论
0/150
提交评论