2021-2022学年河北省张家口市猫峪乡中学高三数学理联考试题含解析_第1页
2021-2022学年河北省张家口市猫峪乡中学高三数学理联考试题含解析_第2页
2021-2022学年河北省张家口市猫峪乡中学高三数学理联考试题含解析_第3页
2021-2022学年河北省张家口市猫峪乡中学高三数学理联考试题含解析_第4页
2021-2022学年河北省张家口市猫峪乡中学高三数学理联考试题含解析_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2021-2022学年河北省张家口市猫峪乡中学高三数学理联考试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.设,,,则的大小关系是A.

B.

C.

D.

参考答案:A略2.已知双曲线的顶点与焦点分别是椭圆的焦点与顶点,若双曲线的两条渐近线与椭圆的交点构成的四边形恰为正方形,则椭圆的离心率为()A.B.C.D.参考答案:D3.已知变量满足,则的最大值为(

)A.4

B.7

C.10

D.12参考答案:C先作可行域,则直线过点A(4,2)时取最大值10,选C.4.若,则为(

)A.

B.

C.

D.参考答案:答案:C5.已知平面向量,且,则(A)

(B)

(C) (D)参考答案:答案:C6.下列函数中,在内有零点且单调递增的是

(A) (B)

(C) (D)参考答案:B略7.某电视台连续播放5个广告,其中3个不同的商业广告和2个不同的奥运宣传广告,要求最后播放的必须是奥运宣传广告,且2个奥运宣传广告不能连续播放,则不同的播放方式有(

A.120种

B.48种

C.36种

D.18种参考答案:答案:C8.设数列是等差数列,为其前项和.若,,则(

)A.4

B.36

C.-74

D.80参考答案:C依题意,得:,解得:,所以,=-749.下列命题错误的是

)(A)对于命题,使得,则为:,均有(B)命题“若,则”的逆否命题为“若,则”(C)若为假命题,则均为假命题(D)“”是“”的充分不必要条件参考答案:C略10.函数,在同一直角坐标系第一象限中的图像可能是

)参考答案:B二、填空题:本大题共7小题,每小题4分,共28分11.设a=lg2,b=20.5,c=cosπ,则a,b,c按由小到大的顺序是

.参考答案:c<a<b【考点】对数值大小的比较.【分析】利用指数函数与对数函数、三角函数的单调性即可得出.【解答】解:∵a=lg2∈(0,1),b=20.5>1,<0,∴c<a<b.故答案为:c<a<b.【点评】本题考查了指数函数与对数函数、三角函数的单调性,考查了推理能力与计算能力,属于基础题.12.若△ABC的三条边a,b,c所对应的角分别为A,B,C,且面积S△ABC=(b2+c2﹣a2),则角A=.参考答案:【考点】余弦定理.【专题】解三角形.【分析】根据余弦定理得b2+c2﹣a2=2bccosA,根据三角形的面积公式S=bcsinA和题意求出tanA,根据A的范围和特殊角的三角函数值求出A的值.【解答】解:由余弦定理得,b2+c2﹣a2=2bccosA,因为S△ABC=(b2+c2﹣a2),所以bcsinA=×2bccosA,则sinA=cosA,即tanA=1,又0<A<π,则A=,故答案为:.【点评】本题考查余弦定理,三角形的面积公式,以及特殊角的三角函数值,注意内角的范围.13.已知数列{an}的前n项和为Sn,且Sn=n2+n,则a3=.参考答案:6【考点】等差数列的通项公式.【分析】a3=S3﹣S2,由此能求出结果.【解答】解:∵数列{an}的前n项和为Sn,且,∴a3=S3﹣S2=(9+3)﹣(4+2)=6.故答案为:6.14.函数

则的解集为________。参考答案:15.

函数f(x)=loga(a>0且a≠1),f(2)=3,则f(-2)的值为__________.参考答案:-316.直线l的参数方程是(其中t为参数),若原点O为极点,x正半轴为极轴,圆C的极坐标方程为ρ=2cos(θ+),过直线上的点向圆引切线,则切线长的最小值是

.参考答案:2考点:直线的参数方程;简单曲线的极坐标方程.专题:直线与圆.分析:将圆的极坐标方程和直线l的参数方程转化为普通方程,利用点到直线的距离公式求出圆心到直线l的距离,要使切线长最小,必须直线l上的点到圆心的距离最小,此最小值即为圆心到直线的距离d,求出d,由勾股定理可求切线长的最小值.解答: 解:∵圆C的极坐标方程为ρ=2cos(θ+),∴ρ2=ρcosθ﹣ρsinθ,∴x2+y2=x﹣y,即(x﹣)2+(y+)2=1,∴圆C是以M(,﹣)为圆心,1为半径的圆…2分化直线l的参数方程

(t为参数)为普通方程:x﹣y+4=0,…4分∵圆心M(,﹣)到直线l的距离为d==5,…6分要使切线长最小,必须直线l上的点到圆心的距离最小,此最小值即为圆心M(,﹣)到直线的距离d,由勾股定理求得切线长的最小值为

==2.故答案为:2.点评:本题考查圆的极坐标方程,直线的参数方程、直线与圆的位置关系,考查运算求解能力,考查数形结合思想、化归与转化思想,属于中档题.17.函数f(x)=sin(2x+φ)(|φ|<)向左平移个单位后是奇函数,则函数f(x)在[0,]上的最小值为.参考答案:【考点】函数y=Asin(ωx+φ)的图象变换.【分析】首先利用函数图象的平移得到平移后的图象的函数解析式,再根据函数为奇函数得到φ的值,则函数解析式可求,由x的范围得到相位的范围,最后求得函数的最小值.【解答】解:把函数y=sin(2x+φ)的图象向左平移个单位得到函数y=sin(2x++φ)的图象,∵函数y=sin(2x++φ)为奇函数,故+φ=kπ,∵|φ|<,故φ的最小值是﹣.∴函数为y=sin(2x﹣).x∈[0,],∴2x﹣∈[﹣,],x=0时,函数取得最小值为﹣.故答案为:﹣.三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.已知△ABC中,角A,B,C的对边分别为a,b,c,已知向量=(cosB,2cos2-1),=(c,b-2a)且.(1)求角C的大小; (2)若△ABC的面积为,a+b=6,求c. 参考答案:【考点】余弦定理;平面向量数量积的运算. 【分析】(1)由已知利用平面向量数量积,三角函数恒等变换的应用化简可得sinA=2sinAcosC,由sinA≠0,可求,结合范围C∈(0,π),可求C的值. (2)利用三角形面积公式可求ab=8,进而利用余弦定理可求c的值. 【解答】解:(1)∵由已知可得:,,, ∴ccosB+(b﹣2a)cosC=0, ∴sinCcosB+(sinB﹣2sinA)cosC=0,即sinA=2sinAcosC, 又∵sinA≠0, ∴, 又∵C∈(0,π), ∴. (2)∵, ∴ab=8, 又c2=a2+b2﹣2abcosC,即(a+b)2﹣3ab=c2, ∴c2=12, 故. 【点评】本题主要考查了平面向量数量积,三角函数恒等变换的应用,三角形面积公式,余弦定理在解三角形中的综合应用,考查了计算能力和转化思想,属于基础题. 19.设椭圆C:=1(a>b>0)的焦点F1,F2,过右焦点F2的直线l与C相交于P、Q两点,若△PQF1的周长为短轴长的2倍.(Ⅰ)求C的离心率;(Ⅱ)设l的斜率为1,在C上是否存在一点M,使得?若存在,求出点M的坐标;若不存在,说明理由.参考答案:【考点】K4:椭圆的简单性质.【分析】(Ⅰ)由椭圆的焦点F1,F2,过右焦点F2的直线l与C相交于P、Q两点,△PQF1的周长为短轴长的2倍,得到,由此能求出椭圆C的离心率.(Ⅱ)设椭圆方程为,直线的方程为y=x﹣c,代入椭圆方程得,由此利用韦达定理、椭圆性质、向量知识,结合已知条件能求出不存在点M,使成立.【解答】解:(Ⅰ)∵椭圆C:=1(a>b>0)的焦点F1,F2,过右焦点F2的直线l与C相交于P、Q两点,△PQF1的周长为短轴长的2倍,△PQF1的周长为4a…∴依题意知,即…∴C的离心率…(Ⅱ)设椭圆方程为,直线的方程为y=x﹣c,代入椭圆方程得…设P(x1,y1),Q(x2,y2),则,…设M(x0,y0),则①…由得…代入①得…因为,,所以②…而…从而②式不成立.故不存在点M,使成立…20.在平面直角坐标系中,已知曲线的参数方程为(,为参数).以坐标原点为极点,轴的正半轴为极轴,取相同的长度单位建立极坐标系,直线的极坐标方程为.(Ⅰ)当时,求曲线上的点到直线的距离的最大值;(Ⅱ)若曲线上的所有点都在直线的下方,求实数的取值范围.参考答案:曲线上的点到直线的距离,,当时,,即曲线上的点到直线的距离的最大值为.(2)∵曲线上的所有点均在直线的下方,∴对,有恒成立,即(其中)恒成立,∴.又,∴解得,∴实数的取值范围为.21.在△ABC中,已知,且B为锐角.(1)求sinB;(2)若,且△ABC的面积为,求△ABC的周长.参考答案:解:(1)∵.∴或.在中.∵,所以.(2)设内角,,所对的边分别为,,.∵,∴.∴.又∵的面积为,∴.∴.当为

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论