版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2021-2022学年江西省宜春市高安煤矿中学高三数学理模拟试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.在平面四边形ABCD中,若=(2,4),=(1,3),则等于(
)
A.(2,4)
B.(3,5)
C.(-3,-5)
D.(-2,-4)参考答案:C2.若复数,,其中是虚数单位,则复数的实部为(
)A.-20
B.15
C.30
D.8参考答案:B3.设集合是的子集,如果点满足:,称为集合的聚点.则下列集合中以为聚点的有:;②;③;
④ ()A.①④ B.②③ C.①② D.①②④参考答案:A略4.各大学在高考录取时采取专业志愿优先的录取原则.一考生从某大学所给的个专业中,选择个作为自己的第一、二、三专业志愿,其中甲、乙两个专业不能同时兼报,则该考生不同的填报专业志愿的方法有
种。参考答案:180略5.已知命题命题则下列命题中为真命题的是(
)
A.
B.
C.
D.参考答案:【知识点】命题及其关系A2D考察函数图象可知:命题为假命题,命题为真命题,所以为真命题.【思路点拨】先判断Pq的真假再判定真假。6.设是虚数单位,则复数
A.
B.
C.
D.参考答案:C7.已知命题,使得;,使得.以下命题为真命题的为(
)A.
B.
C.
D.参考答案:D略8.函数的定义域为()A.(-∞,-1)
B.(-∞,1)
C.(0,1)
D.(1,+∞)参考答案:D由x-1>0,可得x>1.9.将函数的图象向右平移个单位长度,再向上平移1个单位长度,则所得的图象对应的解析式为(A)
(B)
(C)
(D)参考答案:C10.已知矩形的四个顶点的坐标分别是,,,,其中两点在曲线上,如图所示.若将一枚骰子随机放入矩形中,则骰子落入阴影区域的概率是(
)A.
B.
C.
D.参考答案:C二、填空题:本大题共7小题,每小题4分,共28分11.双曲线与直线相交于两个不同的点,则双曲线离心率的取值范围是
.参考答案:12.若数列中,则
A.1540
B.500
C.505
D.510参考答案:C13.设f(x)是定义在R上且周期为2的函数,在区间[﹣1,1)上,f(x)=,其中a∈R,若f(﹣)=f(),则f(5a)的值是.参考答案:﹣【考点】分段函数的应用;周期函数.【分析】根据已知中函数的周期性,结合f(﹣)=f(),可得a值,进而得到f(5a)的值.【解答】解:f(x)是定义在R上且周期为2的函数,在区间[﹣1,1)上,f(x)=,∴f(﹣)=f(﹣)=﹣+a,f()=f()=|﹣|=,∴a=,∴f(5a)=f(3)=f(﹣1)=﹣1+=﹣,故答案为:﹣14.若函数的图象过定点,则=
.参考答案:2略15.函数(为常数,A>0,>0)的部分图象如图所示,则的值是
参考答案:略16.设复数z=(a+cosθ)+(2a﹣sinθ)i(i为虚数单位),若对任意实数θ,|z|≤2,则实数a的取值范围为.参考答案:考点:复数求模.专题:计算题.分析:首先利用复数莫得公式求模,然后利用三角函数进行化简,由|z|≤2得到不等式,然后根据a的符号把该不等式分类转化为不含三角函数的不等式,求解后对a取并集即可得到答案.解答:解:由z=(a+cosθ)+(2a﹣sinθ)i,所以===(tanα=2).因为|z|≤2,所以.若a=0,此式显然成立,若a>0,由,得,解得.若a<0,由,得,解得.所以对任意实数θ,满足|z|≤2的实数a的取值范围为.故答案为.点评:本题考查了复数模的求法,考查了数学转化思想方法和分类讨论的数学思想方法,是中档题.17.若点在函数的图象上,则
参考答案:三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.选修4﹣4:极坐标与参数方程极坐标系与直角坐标系xOy有相同的长度单位,以原点O为极点,以x轴正半轴为极轴.已知曲线C1的极坐标方程为,曲线C2的极坐标方程为ρsinθ=a(a>0),射线,与曲线C1分别交异于极点O的四点A,B,C,D.(Ⅰ)若曲线C1关于曲线C2对称,求a的值,并把曲线C1和C2化成直角坐标方程;(Ⅱ)求|OA|?|OC|+|OB|?|OD|的值.参考答案:考点:点的极坐标和直角坐标的互化.专题:直线与圆.分析:(Ⅰ)把C1、把C2的方程化为直角坐标方程,根据因为曲线C1关于曲线C2对称,可得直线y=a经过圆心(1,1),求得a=1,故C2的直角坐标方程.(Ⅱ)由题意可得,;φ;;=2cos(+φ),再根据|OA|?|OC|+|OB|?|OD|=8sin(φ+)sinφ+8cos(+φ)cosφ=8cos,计算求得结果.解答: 解:(Ⅰ)C1:即ρ2=2ρ(sinθ+cosθ)=2ρsinθ+2ρcosθ,化为直角坐标方程为(x﹣1)2+(y﹣1)2=2.把C2的方程化为直角坐标方程为y=a,因为曲线C1关于曲线C2对称,故直线y=a经过圆心(1,1),解得a=1,故C2的直角坐标方程为y=1.(Ⅱ)由题意可得,;φ;;=2cos(+φ),∴|OA|?|OC|+|OB|?|OD|=8sin(φ+)sinφ+8cos(+φ)cosφ=8cos[(+φ)﹣φ]=8×=4.点评:本题主要考查把极坐标方程化为直角坐标方程的方法,两角和差的余弦公式,属于基础题.19.(本小题满分14分)如图,在三棱柱ABC-A1B1C1中,CC1⊥底面ABC,AC=BC=2,,CC1=4,M是棱CC1上一点.(Ⅰ)求证:BC⊥AM;(Ⅱ)若N是AB上一点,且,求证:CN//平面AB1M;(Ⅲ)若,求二面角A-MB1-C的大小.参考答案:(Ⅰ)因为三棱柱ABC-A1B1C1中CC1⊥平面ABC,所以CC1⊥BC.
……1分因为AC=BC=2,,所以由勾股定理的逆定理知BC⊥AC.
……2分又因为AC∩CC1=C,所以BC⊥平面ACC1A1.
……3分因为AM平面ACC1A1,所以BC⊥AM.
……4分
(Ⅱ)过N作NP∥BB1交AB1于P,连结MP,则NP∥CC1,且∽.……………5分于是有.由已知,有.因为BB1=CC1.所以NP=CM.所以四边形MCNP是平行四边形.
……6分所以CN//MP.
……7分因为CN平面AB1M,MP平面AB1M,
……8分所以CN//平面AB1M.
……9分(Ⅲ)因为
BC⊥AC,且CC1⊥平面ABC,所以
以C为原点,CA,CB,CC1分别为x轴,y轴,z轴建立空间直角坐标系C-xyz.…10分因为
,所以C(0,0,0),A(2,0,0),B1(0,2,4),,,.
……11分设平面的法向量,则,.即
令,则,即.
……12分又平面MB1C的一个法向量是,
所以
.
……13分由图可知二面角A-MB1-C为锐角,所以
二面角A-MB1-C的大小为.
……14分20.(本小题满分12分)已知函数的最小正周期为,当
时,函数的最小值为0.(Ⅰ)求函数的表达式;(Ⅱ)在中,若的值.参考答案:(Ⅰ)……2分依题意函数
所以
…………4分
(Ⅱ)
21.(本小题满分10分)已知向量,记
(I)
若,求的值;(Ⅱ)将函数的图象向右平移个单位得到的图象,若函数在上有零点,求实数k的取值范围参考答案:【知识点】向量的数量积;三角函数的求值;三角函数的图像.F3
C3
C7(I)1(II)解析:(I)由已知得,于是(II)将函数的图象向右平移个单位得到函数的图象,当x∈时,,所以,所以,若函数在上有零点,则k∈【思路点拨】由向量的关系可求出函数的解析式,再根据三角函数的性质求出函数的取值,从而求得使函数在上有零点得k范围.
22.已知等差数列中,,。(1)求数列的通
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 高考物理总复习专题十电磁感应第2讲法拉第电磁感应定律、自感、涡流练习含答案
- 广东省阳东广雅学校高二信息技术 三维动画制作教案
- 2024年学年七年级语文下册 第二单元 告别抒怀 第4课《告别昨天的我》教案2 新疆教育版
- 2024-2025学年高中化学 第3章 第2节 课时3 铁的重要化合物教案 新人教版必修1
- 2024年届九年级历史上册 第5课 为争取“民主”“共和”而战教案2 北师大版
- 2023六年级数学上册 二 比和比例 测量旗杆高度教案 冀教版
- 2023六年级数学下册 三 解决问题的策略第三课时 解决问题的策略(练习课)教案 苏教版
- 文书模板-中医师承关系合同书
- 高考地理一轮复习第十二章环境与发展第一节环境问题与可持续发展课件
- 生活水泵房管理制度
- 有子女民政局常用协议离婚书格式2024年
- 中国介入医学白皮书(2021 版)
- 2024中华人民共和国农村集体经济组织法详细解读课件
- 人教新目标八年级上册英语《Unit 7 Will people have robots?》Section A-说课稿1
- 代运营合作服务协议
- 婚内财产协议书(2024版)
- 有限空间作业应急管理制度
- 2024全国普法知识考试题库及答案
- 化工企业中试阶段及试生产期间的产品能否对外销售
- 篮球智慧树知到期末考试答案章节答案2024年浙江大学
- 国开作业《公共关系学》实训项目1:公关三要素分析(六选一)参考552
评论
0/150
提交评论