版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2021-2022学年江苏省南京市第四十一中学高二数学理联考试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.设m、n是两条不同的直线α、β是两个不同的平面,有下列四个命题:①如果α∥β,m?α,那么m∥β;②如果m⊥α,β⊥α,那么m∥β;③如果m⊥n,m⊥α,n∥β,那么α⊥β;④如果m∥β,m?α,α∩β=n,那么m∥n其中正确的命题是()A.①② B.①③ C.①④ D.③④参考答案:C【考点】命题的真假判断与应用.【分析】根据空间直线与直线,直线与平面的位置关系及几何特征,逐一分析四个命题的真假,可得答案.【解答】解:①如果α∥β,m?α,那么m∥β,故正确;②如果m⊥α,β⊥α,那么m∥β,或m?β,故错误;③如果m⊥n,m⊥α,n∥β,那么α,β关系不能确定,故错误;④如果m∥β,m?α,α∩β=n,那么m∥n,故正确故选:C2.已知实数,则下列不等式中恒成立的一个是(
)A.
B.C.
D.参考答案:D略3.已知二次函数y=ax2+(a2+1)x在x=1处的导数值为1,则该函数的最大值是()A.B.C.D.参考答案:D4.已知命题:“正数a的平方不等于0”,命题:“a不是正数,则它的平方等于0”,则是的(
)A.逆命题B.否命题
C.逆否命题
D.否定参考答案:B略5.对于不等式,某同学应用数学归纳法的证明过程如下:(1)当时,,不等式成立;(2)假设当时,不等式成立,即,即当时,,∴当时,不等式成立,则上述证法(
)A.过程全部正确
B.验证不正确C.归纳假设不正确
D.从到的推理不正确参考答案:D点睛:数学归纳法证明中需注意的事项(1)初始值的验证是归纳的基础,归纳递推是证题的关键,两个步骤缺一不可.(2)在用数学归纳法证明问题的过程中,要注意从k到k+1时命题中的项与项数的变化,防止对项数估算错误.(3)解题中要注意步骤的完整性和规范性,过程中要体现数学归纳法证题的形式.6.现有16张不同的卡片,其中红色、黄色、蓝色、绿色卡片各4张,从中任取3张,要求这3张卡片不能是同一种颜色,且红色卡片至多1张,不同的取法种数为(
)A.232
B.252
C.472
D.484参考答案:C7.设P是的二面角内一点,垂足,则AB的长为(
)
A
B
C
D
参考答案:C8.已知抛物线上存在关于直线对称的相异两点A、B,则|AB|等于(
)
A.3
B.4
C.
D.参考答案:C略9.过双曲线的一个焦点作实轴的垂线,交双曲线于A,B两点,若线段AB的长度恰等于焦距,则双曲线的离心率为(
)A. B. C. D.参考答案:A试题分析:,又.考点:双曲线的标准方程及其几何性质(离心率的求法).10.抛物线y2=4x的焦点为F,准线为l,经过F且斜率为的直线与抛物线在x轴上方的部分相交于点A,AK⊥l,垂足为K,则△AKF的面积是() A.4 B. C. D.8参考答案:C【考点】抛物线的简单性质. 【专题】计算题;压轴题. 【分析】先根据抛物线方程求出焦点坐标和准线方程,进而可得到过F且斜率为的直线方程然后与抛物线联立可求得A的坐标,再由AK⊥l,垂足为K,可求得K的坐标,根据三角形面积公式可得到答案. 【解答】解:∵抛物线y2=4x的焦点F(1,0),准线为l:x=﹣1, 经过F且斜率为的直线与抛物线在x轴上方的部分相交于点A(3,2), AK⊥l,垂足为K(﹣1,2), ∴△AKF的面积是4 故选C. 【点评】本题主要考查抛物线的基本性质和直线和抛物线的综合问题.直线和圆锥曲线的综合题是高考的热点要重视. 二、填空题:本大题共7小题,每小题4分,共28分11.过椭圆左焦点F1作弦AB,则(F2为右焦点)的周长是
参考答案:16略12.已知关于x的不等式>0在[1,2]上恒成立,则实数m的取值范围为___________参考答案:【分析】对m进行分类讨论,、时分别分析函数的单调性,对m的取值范围进行进一步分类讨论,求出该函数在区间上的最小值,令最小值大于0,即可求得m范围.【详解】①当时,函数外层单调递减,内层二次函数:当,即时,二次函数在区间内单调递增,函数单调递减,,解得:;当,即时,无意义;当,,即时,二次函数在区间内先递减后递增,函数先递增后递减,则需,无解;当,即时,二次函数在区间内单调递减,函数单调递增,,无解.②当时,函数外层单调递增,,二次函数单调递增,函数单调递增,所以,解得:.综上所述:或.【点睛】本题考查不等式的恒成立问题,若大于0恒成立,则最小值大于0,若小于0恒成立则最大值小于0,注意对参数进行分类讨论,区分存在性问题与恒成立问题.13.某射手射击1次,击中目标的概率是0.9.她连续射击4次,且各次射击是否击中目标相互之间没有影响.有下列结论:①他第3次击中目标的概率是0.9;②他恰好击中目标3次的概率是;③他至少击中目标1次的概率是.其中正确结论的序号是___________。(写出所有正确结论的序号)参考答案:①③14.“f′(x0)=0”是“可导函数y=f(x)在点x=x0处有极值”的条件(选填“充分不必要”或“必要不充分”或“充要”或“既不充分又不必要”)参考答案:既不充分又不必要考点:必要条件、充分条件与充要条件的判断.专题:简易逻辑.分析:根据函数在极值点的导数等于零,可得充分性成立.再由导数等于零的点不一定是极值点可得必要性不成立,从而得出结论.解答:解:“定义在R上的可导函数在x=x0处取得极值”,不能推出“f′(x0)=0”成立,例如f(x)=|x|在x=0处有极小值为0,但f(x)在x=0处不可导,故充分性不成立.但由于导数等于零的点不一定是极值点,如函数y=x3在x=0处得导数等于零,但函数在x=0处无极值,故由“f′(x0)=0”,不能退出“定义在R上的可导函数在x=x0处取得极值”成立,即必要性不成立,故答案为:既不充分也不必要条件.点评:本题主要考查充分条件、必要条件、充要条件的定义,函数的导数等于零的点与函数的极值点的关系,属于基础题.15.1785与840的最大约数为.参考答案:105【考点】用辗转相除计算最大公约数.【分析】用辗转相除法求840与1785的最大公约数,写出1785=840×2+105,840=105×8+0,得到两个数字的最大公约数.【解答】解:1785=840×2+105,840=105×8+0.∴840与1785的最大公约数是105.故答案为10516.将正整数对作如下分组,第1组为,第2组为,第3组为,第4组为则第30组第16个数对为__________.参考答案:(17,15)根据归纳推理可知,每对数字中两个数字不相等,且第一组每一对数字和为3,第二组每一对数字和为4,第三组每对数字和为,第30组每一对数字和为32,∴第30组第一对数为,第二对数为,第15对数为,第16对数为.
17.如图,正方体的棱长为1,P为BC的中点,Q为线段上的动点,过点A,P,Q的平面截该正方体所得的截面记为S.则下列命题正确的是___
__(写出所有正确命题的编号).①当时,S为四边形;②当时,S为六边形;③当时,S与的交点R满足;④当时,S为等腰梯形;⑤当时,S的面积为.参考答案:略三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.根据某电子商务平台的调查统计显示,参与调查的1000位上网购物者的年龄情况如图显示.(1)已知[30,40)、[40,50)、[50,60)三个年龄段的上网购物者人数成等差数列,求a,b的值.(2)该电子商务平台将年龄在[30,50)之间的人群定义为高消费人群,其他的年龄段定义为潜在消费人群,为了鼓励潜在消费人群的消费,该平台决定发放代金券,高消费人群每人发放50元的代金券,潜在消费人群每人发放100元的代金券,现采用分层抽样的方式从参与调查的1000位上网购者中抽取10人,并在这10人中随机抽取3人进行回访,求此三人获得代金券总和X的分布列与数学期望.参考答案:【考点】离散型随机变量的期望与方差;频率分布直方图;离散型随机变量及其分布列.【分析】(1)由等差数列性质和频率分布直方图得,由此能求出a,b.(2)利用分层抽样从样本中抽取10人,其中属于高消费人群的为6人,属于潜在消费人群的为4人.从中取出三人,并计算三人所获得代金券的总和X,则X的所有可能取值为:150,200,250,300.分别求出相应的概率,由此能求出此三人获得代金券总和X的分布列与数学期望【解答】解:(1)∵[30,40)、[40,50)、[50,60)三个年龄段的上网购物者人数成等差数列,∴由频率分布直方图得,解得a=0.035,b=0.025.(2)利用分层抽样从样本中抽取10人,其中属于高消费人群的为6人,属于潜在消费人群的为4人.从中取出三人,并计算三人所获得代金券的总和X,则X的所有可能取值为:150,200,250,300.P(X=150)=,P(X=200)=,P(X=250)=,P(X=300)=,∴X的分布列为:X150200250300P
EX=150×+200×+250×+300×=210.19.已知点A(0,﹣2),椭圆E:+=1(a>b>0)的离心率为,F是椭圆的焦点,直线AF的斜率为,O为坐标原点.(Ⅰ)求E的方程;(Ⅱ)设过点A的直线l与E相交于P,Q两点,当△OPQ的面积最大时,求l的方程.参考答案:【考点】直线与圆锥曲线的关系;椭圆的简单性质.【分析】(Ⅰ)通过离心率得到a、c关系,通过A求出a,即可求E的方程;(Ⅱ)设直线l:y=kx﹣2,设P(x1,y1),Q(x2,y2)将y=kx﹣2代入,利用△>0,求出k的范围,利用弦长公式求出|PQ|,然后求出△OPQ的面积表达式,利用换元法以及基本不等式求出最值,然后求解直线方程.【解答】解:(Ⅰ)设F(c,0),由条件知,得?又,所以a=2?,b2=a2﹣c2=1,故E的方程.….(Ⅱ)依题意当l⊥x轴不合题意,故设直线l:y=kx﹣2,设P(x1,y1),Q(x2,y2)将y=kx﹣2代入,得(1+4k2)x2﹣16kx+12=0,当△=16(4k2﹣3)>0,即时,从而??6558764又点O到直线PQ的距离,所以△OPQ的面积=,设,则t>0,,当且仅当t=2,k=±等号成立,且满足△>0,所以当△OPQ的面积最大时,l的方程为:y=x﹣2或y=﹣x﹣2.…20.如图:区域A是正方形OABC(含边界),区域B是三角形ABC(含边界).(Ⅰ)向区域A随机抛掷一粒黄豆,求黄豆落在区域B的概率;(Ⅱ)若x,y分别表示甲、乙两人各掷一次骰子所得的点数,求点(x,y)落在区域B的概率.参考答案:【考点】列举法计算基本事件数及事件发生的概率;模拟方法估计概率.【分析】(Ⅰ)根据三角形和正方形的面积之比求出满足条件的概率即可;(Ⅱ)求出落在B内的可能,从而求出满足条件的概率即可.【解答】解:(Ⅰ)向区域A随机抛掷一枚黄豆,黄豆落在区域B的概率;(Ⅱ)甲、乙两人各掷一次骰子,占(x,y)共36种结可能.其中落在B内的有26种可能,即(1,5),(1,6),(2,4),(2,5),(2,6),(3,3),(3,4),(3,5),(3,6),(4,2),(4,3),(4,4),(4,5),(4,6),(5,1)
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025版共享经济劳动关系与劳动合同灵活运用合同3篇
- 2024年货物预定押金协议版B版
- 2025版智能建筑电气系统安装服务合同3篇
- 2025电器预防性试验检测、调试项目承揽合同
- 2025版酒店客房用品定制销售合同模板3篇
- 2025医疗器材购销合同范本
- 2025灯具购买合同
- 2024年版物联网技术研发与合作协议
- 2025版跨境电商供应链金融合作协议合同范本3篇
- 2024年跨国连锁餐饮加盟合同
- 市场营销试题(含参考答案)
- 铁路桥梁墩身施工专项方案
- 贝雷片-潮白新河钢栈桥及钢平台计算说明书
- VF程序设计知识要点
- 燃气-蒸汽联合循环机组详介
- 初中信息技术课程教学设计案例
- 计价格[1999]1283号_建设项目前期工作咨询收费暂行规定
- 植物与植物生理课程教学大纲
- 展厅展馆中控系统解决方案
- 儿童福利个人工作总结报告
- 《夜宿山寺》
评论
0/150
提交评论