版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2021-2022学年安徽省滁州市明光张八岭中学高二数学文月考试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.函数f(x)=(x-3)ex的单调递增区间是()A.(-∞,2)
B.(0,3)C.(1,4)
D.(2,+∞)参考答案:D略2.下列有关命题的说法正确的是(
)
A.命题“若,则”的否命题为:“若,则”.B.“”是“”的必要不充分条件.C.命题“使得”的否定是:“均有”.D.命题“若,则”的逆否命题为真命题参考答案:D略3.已知随机变量服从正态分布,,则(
)A.0.89 B.0.22 C.0.11 D.0.78参考答案:C【分析】由随机变量服从正态分布,可得这组数据对应的正态曲线的对称轴,利用正态曲线的对称性,即可得到结论.【详解】随机变量服从正态分布,这组数据对应的正态曲线的对称轴,,,,,故选C.【点睛】本题主要考查正态分布的性质,属于中档题.有关正态分布应用的题考查知识点较为清晰,只要熟练掌握正态分布的性质,特别是状态曲线的对称性以及各个区间概率之间的关系,问题就能迎刃而解.4.已知抛物线与直线相交于A、B两点,其中A点的坐标是(1,2)。如果抛物线的焦点为F,那么等于(
)A.5
B.6
C.
D.7参考答案:D试题分析:把点(1,2),代入抛物线和直线方程,分别求得p=2,a=2∴抛物线方程为,直线方程为2x+y-4=0,联立消去y整理得,解得x和1或4,∵A的横坐标为1,∴B点横坐标为4,根据抛物线定义可知|FA|+|FB|=+1++1=7,故选D..考点:直线与圆锥曲线的关系;直线的一般式方程;抛物线的简单性质.5.已知集合,集合,则等于A.
B.
C.
D.参考答案:A略6.在复平面内,复数i(2﹣i)对应的点位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限参考答案:A【考点】复数的代数表示法及其几何意义.【分析】首先进行复数的乘法运算,得到复数的代数形式的标准形式,根据复数的实部和虚部写出对应的点的坐标,看出所在的象限.【解答】解:∵复数z=i(2﹣i)=﹣i2+2i=1+2i∴复数对应的点的坐标是(1,2)这个点在第一象限,故选A.7.如图所示,在边长为1的正方形OABC中任取一点P,则点P恰好取自阴影部分的概率为()参考答案:C略8.已知集合,,则等于A.
B.
C.
D.
参考答案:D9.在复平面内,复数的对应点位于A.第一象限
B.第二象限
C.第三象限
D.第四象限参考答案:D10.下列程序执行后输出的结果是()A.
–1
B.
0
C.
1
D.2参考答案:B二、填空题:本大题共7小题,每小题4分,共28分11.下面是一个算法.如果输出的y的值是20,则输入的x的值是
.参考答案:2或612.如图,函数y=f(x)的图象在点P处的切线方程是y=﹣x+8,则f(5)+f′(5)=.参考答案:2【考点】利用导数研究曲线上某点切线方程.【专题】计算题;导数的概念及应用.【分析】根据导数的几何意义,结合切线方程,即可求得结论.【解答】解:由题意,f(5)=﹣5+8=3,f′(5)=﹣1∴f(5)+f′(5)=2故答案为:2【点评】本题考查导数的几何意义,考查学生的计算能力,属于基础题.13.以抛物线的焦点为圆心,且与双曲线的两条渐近线相切的圆的方程为_____________________.参考答案:14.二项式(9x+)18的展开式的常数项为
(用数字作答).参考答案:18564【考点】二项式定理的应用.【分析】首先写出展开式的通项并整理,从未知数的指数找出满足条件的常数项.【解答】解:由已知得到展开式的通项为:=,令r=12,得到常数项为=18564;故答案为:18564.15.“,使得”的否定为
.参考答案:,使特称命题的否定为全称命题,所以“,使得”的否定为“,使”.
16.函数的极小值是______.参考答案:【分析】求函数的导数,由f’(x)>0,得增区间,由f’(x)<0,得减区间,从而可确定极值.【详解】函数,定义域为,则f’(x)=x-,由f’(x)>0得x>1,f(x)单调递增;当x<0或0<x<1时,f’(x)<0,f(x)单调递减,故x=1时,f(x)取极小值故答案为【点睛】本题考查导数的运用:求单调区间和求极值,注意判断极值点的条件,考查运算能力,属于基础题.17.已知为椭圆上一点,为椭圆长轴上一点,为坐标原点.给出下列结论:1
存在点,使得为等边三角形;2
不存在点,使得为等边三角形;③存在点,使得;④不存在点,使得.其中,所有正确结论的序号是__________.参考答案:①④三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.如图所示,将一矩形花坛ABCD扩建成一个更大的矩形花坛AMPN,要求B点在AM上,D点在AN上,且对角线MN过点C,已知AB=3米,AD=2米.(Ⅰ)要使矩形AMPN的面积大于32平方米,则DN的长应在什么范围内?(Ⅱ)当DN的长度为多少时,矩形花坛AMPN的面积最小?并求出最小值.参考答案:考点:基本不等式在最值问题中的应用;函数模型的选择与应用.专题:综合题.分析:(Ⅰ)设DN的长为x(x>0)米,则|AN|=(x+2)米,表示出矩形的面积,利用矩形AMPN的面积大于32平方米,即可求得DN的取值范围.(2)化简矩形的面积,利用基本不等式,即可求得结论.解答:解:(Ⅰ)设DN的长为x(x>0)米,则|AN|=(x+2)米∵,∴∴由SAMPN>32得又x>0得3x2﹣20x+12>0解得:0<x<或x>6即DN的长取值范围是(Ⅱ)矩形花坛的面积为当且仅当3x=,即x=2时,矩形花坛的面积最小为24平方米.点评:本题考查根据题设关系列出函数关系式,并求出处变量的取值范围;考查利用基本不等式求最值,解题的关键是确定矩形的面积.19.在△ABC中,若acosA=bcosB,判断△ABC的形状.参考答案:解:∵cosA=,cosB=,∴?a=?b,化简得:a2c2﹣a4=b2c2﹣b4,即(a2﹣b2)c2=(a2﹣b2)(a2+b2),①若a2﹣b2=0时,a=b,此时△ABC是等腰三角形;②若a2﹣b2≠0,a2+b2=c2,此时△ABC是直角三角形,所以△ABC是等腰三角形或直角三角形略20.如图,在四棱锥P﹣ABCD中,PC⊥底面ABCD,ABCD是直角梯形,AB⊥AD,AB∥CD,AB=2AD=2CD=2.E是PB的中点.(Ⅰ)求证:平面EAC⊥平面PBC;(Ⅱ)若二面角P﹣AC﹣E的余弦值为,求直线PA与平面EAC所成角的正弦值.参考答案:【考点】MR:用空间向量求平面间的夹角;LY:平面与平面垂直的判定.【分析】(Ⅰ)证明平面EAC⊥平面PBC,只需证明AC⊥平面PBC,即证AC⊥PC,AC⊥BC;(Ⅱ)根据题意,建立空间直角坐标系,用坐标表示点与向量,求出面PAC的法向量=(1,﹣1,0),面EAC的法向量=(a,﹣a,﹣2),利用二面角P﹣AC﹣E的余弦值为,可求a的值,从而可求=(2,﹣2,﹣2),=(1,1,﹣2),即可求得直线PA与平面EAC所成角的正弦值.【解答】(Ⅰ)证明:∵PC⊥平面ABCD,AC?平面ABCD,∴AC⊥PC,∵AB=2,AD=CD=1,∴AC=BC=,∴AC2+BC2=AB2,∴AC⊥BC,又BC∩PC=C,∴AC⊥平面PBC,∵AC?平面EAC,∴平面EAC⊥平面PBC.…(Ⅱ)如图,以C为原点,取AB中点F,、、分别为x轴、y轴、z轴正向,建立空间直角坐标系,则C(0,0,0),A(1,1,0),B(1,﹣1,0).设P(0,0,a)(a>0),则E(,﹣,),…=(1,1,0),=(0,0,a),=(,﹣,),取=(1,﹣1,0),则?=?=0,为面PAC的法向量.设=(x,y,z)为面EAC的法向量,则?=?=0,即取x=a,y=﹣a,z=﹣2,则=(a,﹣a,﹣2),依题意,|cos<,>|===,则a=2.…于是=(2,﹣2,﹣2),=(1,1,﹣2).设直线PA与平面EAC所成角为θ,则sinθ=|cos<,>|==,即直线PA与平面EAC所成角的正弦值为.…21.(13分)某城市理论预测2000年到2004年人口总数与年份的关系如下表所示:年份200x(年)01234人口数y(十万)5781119
(Ⅰ)请画出上表数据的散点图;(Ⅱ)请根据上表提供的数据,用最小二乘法求出y关于x的线性回归方程;(Ⅲ)据此估计2005年该城市人口总数.参考公式:用最小二乘法求线性回归方程系数公式参考答案:(1)(2)y=3.2x+3.6
(3)2005年该城市人口总数为19.6万.22.设复数Z=lg(m2+2m﹣14)+(m2﹣m﹣6)i,求实数m为何值时?(Ⅰ)Z是实数;(Ⅱ)Z对应的点位于复平面的第二象限.参考答案:
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 电子政务的课程设计
- 电子技术仿真课程设计
- 货代合同范本(2篇)
- 电子宠物行业研究报告
- 电子地图学课程设计
- 电子商务法概论课程设计
- 电子商务合规课程设计
- 电子双音响门铃课程设计
- 电大钢毕业结构课程设计
- 电器学课程设计
- 【教案】Unit+4+My+Favourite+Subject大单元整体教学设计人教版英语七年级上册
- 2024-2030年中国应急发电机行业市场发展趋势与前景展望战略分析报告
- 2022年全省职业院校技能大赛英语口语赛项职场考验模块题库(高职学生-专业组)
- 2024新版幼儿园传染病疫情报告制度
- 2023年邵阳市自来水公司招聘员工笔试真题
- 16 《大家排好队》(教学设计)2024-2025学年统编版(2024)小学道德与法治一年级上册
- 离职证明(标准模版)
- (高级三级)计算机程序设计员职业技能鉴定考试题库(浓缩500题)
- 2024企业黑神话悟空团建盖世英雄新游记剧本杀主题活动策划方案
- 2024-2025学年八年级地理上册 第二章 单元测试卷(人教版)
- 员工信息管理制度
评论
0/150
提交评论