版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
浙江省金华市兰溪柏社中学2021-2022学年高一数学理下学期期末试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.函数y=x2+2x+3(x≥0)的值域为(
)A.[3,+∞)
B.[0,+∞)
C.[2,+∞)
D.R参考答案:A2.若点在圆C:的外部,则直线与圆C的位置关系是A.相切
B.相离
C.相交
D.以上均有可能参考答案:C3.关于函数,有下列三个命题:①对于任意,都有;②在上是减函数;③对于任意,都有;其中正确命题的个数是(
)A.0
B.1
C.2
D.3参考答案:C4.奇函数f(x)在(-∞,0)上单调递增,若f(-1)=0,则不等式f(x)<0的解集是(
)A.(-∞,-1)∪(0,1) B.(-∞,-1)∪(1,+∞)C.(-1,0)∪(0,1) D.(-1,0)∪(1,+∞)参考答案:A5.函数y=lg(2x2﹣x﹣1)的定义域为()A.(﹣,1) B.(1,+∞) C.(﹣∞,1)∪(2,+∞) D.(﹣∞,﹣)∪(1,+∞)参考答案:D【考点】4K:对数函数的定义域.【分析】函数y=lg(2x2﹣x﹣1)的定义域满足2x2﹣x﹣1>0,由此能求出函数y=lg(2x2﹣x﹣1)的定义域.【解答】解:函数y=lg(2x2﹣x﹣1)的定义域满足:2x2﹣x﹣1>0,解得x<﹣或x>1,∴函数y=lg(2x2﹣x﹣1)的定义域为(﹣∞,﹣)∪(1,+∞).故选:D.6.如果函数f(x)=x2+2(a﹣1)x+2在区间[4,+∞)上是递增的,那么实数a的取值范围是()A.a≤3 B.a≥﹣3 C.a≤5 D.a≥5参考答案:B【考点】二次函数的性质.【专题】计算题;函数的性质及应用.【分析】由抛物线函数f(x)=x2+2(a﹣1)x+2开口向上,对称轴方程是x=1﹣a,在区间[4,+∞)上递增,知1﹣a≤4,由此能求出实数a的取值范围.【解答】解:∵抛物线函数f(x)=x2+2(a﹣1)x+2开口向上,对称轴方程是x=1﹣a,在区间[4,+∞)上递增,∴1﹣a≤4,解得a≥﹣3.故选B.【点评】本题考查二次函数的性质和应用,是基础题.解题时要认真审题,仔细解答.7.已知函数f(x)=,则f(﹣10)的值是()A.﹣2 B.﹣1 C.0 D.1参考答案:D【考点】函数的值.【分析】由题意,代入分段函数求函数的值.【解答】解:f(﹣10)=f(﹣10+3)=f(﹣7)=f(﹣7+3)=f(﹣4)=f(﹣4+3)=f(﹣1)=f(﹣1+3)=f(2)=log22=1.故选D.8.一个正四面体的所有棱长都为,四个顶点在同一个球面上,则此球的表面积为(
)A.
B.
C.
D.参考答案:A略9.在中,且,点满足则等于(▲)A. B. C. D.参考答案:B略10.下列函数y=x,y=x,y=x,y=x中,定义域为{x∈R|x>0}的有()A.1个 B.2个 C.3个 D.4个参考答案:A【考点】函数的定义域及其求法.【专题】函数的性质及应用.【分析】根据题意,分别写出这四个函数的定义域,即可得出所以符合条件的函数有几个.【解答】解:函数y=x的定义域为R,函数y=x的定义域为{x|x≥0};函数y=x的定义域为{x|x≠0};函数y=x中的定义域为{x∈R|x>0};所以符合条件的函数只有1个.故选:A.【点评】本题考查了求常见的函数定义域的应用问题,是基础题目.二、填空题:本大题共7小题,每小题4分,共28分11.已知,则
.参考答案:-112.点A为周长等于3的圆周上的一个定点,若在该圆周上随机取一点B,则劣弧AB的长度小于1的概率为______
.参考答案:13.已知函数的图像如图所示,则
.参考答案:0略14.若tanα=2,tanβ=,则tan(α﹣β)等于.参考答案:
【考点】两角和与差的正切函数.【分析】由已知利用两角差的正切函数公式即可计算得解.【解答】解:∵tanα=2,tanβ=,∴tan(α﹣β)===.故答案为:.15.已知集合A={﹣1,0,1},集合B满足A∪B={﹣1,0,1},则集合B有
个. 参考答案:8【考点】并集及其运算. 【专题】集合思想;数学模型法;集合. 【分析】集合A={﹣1,0,1},集合B满足A∪B={﹣1,0,1},故集合B是集合A的子集,根据集合A中元素的个数,能够求出集合B的个数. 【解答】解:∵集合A={﹣1,0,1},集合B满足A∪B={﹣1,0,1}, ∴集合B是集合A的子集, ∵集合A有3个元素, ∴集合A有23=8个子集. 故集合B有8个. 故答案为:8. 【点评】本题考查集合的并集及其运算,是基础题. 16.数列的通项公式为,则其前n项和为_______________.参考答案:
17.若,则___________.参考答案:11略三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.已知二次函数f(x)的最小值为1,且f(0)=f(2)=3.(1)求f(x)的解析式;(2)若f(x)在区间[2a,a+1]上不单调,求实数a的取值范围;(3)在区间[﹣1,1]上,y=f(x)的图象恒在y=2x+2m+1的图象上方,试确定实数m的取值范围.参考答案:【考点】二次函数的性质.【专题】计算题.【分析】(1)用待定系数法先设函数f(x)的解析式,再由已知条件求解未知量即可(2)只需保证对称轴落在区间内部即可(3)转化为函数求最值问题,即可得到个关于变量m的不等式,解不等式即可【解答】解:(1)由已知∵f(x)是二次函数,且f(0)=f(2)∴对称轴为x=1又最小值为1设f(x)=a(x﹣1)2+1又f(0)=3∴a=2∴f(x)=2(x﹣1)2+1=2x2﹣4x+3(2)要使f(x)在区间[2a,a+1]上不单调,则2a<1<a+1∴(3)由已知2x2﹣4x+3>2x+2m+1在[﹣1,1]上恒成立化简得m<x2﹣3x+1设g(x)=x2﹣3x+1则g(x)在区间[﹣1,1]上单调递减∴g(x)在区间[﹣1,1]上的最小值为g(1)=﹣1∴m<﹣1【点评】本题考查待定系数法和二次函数的单调性和最值,须注意恒成立问题的转化.属简单题19.在梯形中,,,四边形为矩形,平面平面,.(1)设为上一点,且平面平面,求长;(2)求证:平面平面;(3)点在线段上运动,设平面与平面所成二面角的平面角为,试求的取值范围.参考答案:(1)解:(2)证明:只需证明平面(3)解:
略20.i、j是两个不共线的向量,已知=3i+2j,=i+λj,=-2i+j,若A、B、D三点共线,试求实数λ的值.(本小题12分)参考答案:∵=-=(-2i+j)-(i+λj)=-3i+(1-λ)j∵A、B、D三点共线,∴向量与共线,因此存在实数μ,使得=μ,即3i+2j=μ[-3i+(1-λ)j]=-3μi+μ(1-λ)j∵i与j是两不共线向量,由基本定理得:故当A、B、D三点共线时,λ=3.21.有甲,乙两家健身中心,两家设备和服务都相当,但收费方式不同.甲中心每小时5元;乙中心按月计费,一个月中30小时以内(含30小时)90元,超过30小时的部分每小时2元.某人准备下个月从这两家中选择一家进行健身活动,其活动时间不少于15小时,也不超过40小时。(1)设在甲中心健身小时的收费为元,在乙中心健身活动小时的收费为元。试求和;(2)问:选择哪家比较合算?为什么?参考答案:解:(1),
(2)当5x=90时,x=18,
即当时,
当时,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 六盘水职业技术学院《学科论文写作指导》2023-2024学年第一学期期末试卷
- 金陵科技学院《建筑师业务与法规》2023-2024学年第一学期期末试卷
- 新苏教版一年级下册数学第1单元第4课时《十几减8、7》作业
- 怀化职业技术学院《高级电子系统设计(FPGA)》2023-2024学年第一学期期末试卷
- 【物理】第九章 压强 单元练习+2024-2025学年人教版物理八年级下册
- 菏泽医学专科学校《采油工程双语》2023-2024学年第一学期期末试卷
- 淄博师范高等专科学校《食用菌生物学》2023-2024学年第一学期期末试卷
- 浙江音乐学院《社会行政》2023-2024学年第一学期期末试卷
- 浙江工业大学《古代西方哲学史》2023-2024学年第一学期期末试卷
- 常见水的分类
- 2024保密知识教育考试题及答案(基础+提升)
- 2024-2025学年新教材高中数学第八章立体几何初步8.6.2直线与平面垂直一同步练习含解析新人教A版必修第二册
- 汉语拼音默写表及拼读专练
- 肌力的评定与护理
- 工业机器人论文3000字(合集4篇)
- 【中小企业融资难问题探究的国内外综述5800字】
- DL∕T 2138-2020 电力专利价值评估规范
- 深圳市购物中心租金调查
- 我国无菌包装行业消费量已超千亿包-下游需求仍存扩容潜力
- 大数据管理与考核制度大全
- 大学面试后感谢信
评论
0/150
提交评论