版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023中考数学模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(共10小题,每小题3分,共30分)1.在平面直角坐标系xOy中,对于任意三点A,B,C的“矩面积”,给出如下定义:“水平底”a:任意两点横坐标差的最大值,“铅垂高”h:任意两点纵坐标差的最大值,则“矩面积”S=ah.例如:三点坐标分别为A(1,2),B(﹣3,1),C(2,﹣2),则“水平底”a=5,“铅垂高”h=4,“矩面积”S=ah=1.若D(1,2)、E(﹣2,1)、F(0,t)三点的“矩面积”为18,则t的值为()A.﹣3或7B.﹣4或6C.﹣4或7D.﹣3或62.如图,在平面直角坐标系中,正方形ABCD的顶点A的坐标为(﹣1,1),点B在x轴正半轴上,点D在第三象限的双曲线上,过点C作CE∥x轴交双曲线于点E,连接BE,则△BCE的面积为()A.5 B.6 C.7 D.83.如图,在平面直角坐标系中,△ABC位于第二象限,点B的坐标是(﹣5,2),先把△ABC向右平移4个单位长度得到△A1B1C1,再作与△A1B1C1关于于x轴对称的△A2B2C2,则点B的对应点B2的坐标是()A.(﹣3,2) B.(2,﹣3) C.(1,2) D.(﹣1,﹣2)4.如图,小岛在港口P的北偏西60°方向,距港口56海里的A处,货船从港口P出发,沿北偏东45°方向匀速驶离港口,4小时后货船在小岛的正东方向,则货船的航行速度是()A.7海里/时 B.7海里/时 C.7海里/时 D.28海里/时5.下列图形中,既是中心对称图形又是轴对称图形的是()A. B.C. D.6.1.桌面上放置的几何体中,主视图与左视图可能不同的是()A.圆柱B.正方体C.球D.直立圆锥7.若x,y的值均扩大为原来的3倍,则下列分式的值保持不变的是()A. B. C. D.8.点A(4,3)经过某种图形变化后得到点B(-3,4),这种图形变化可以是()A.关于x轴对称 B.关于y轴对称C.绕原点逆时针旋转 D.绕原点顺时针旋转9.如图,AB为⊙O的直径,CD是⊙O的弦,∠ADC=35°,则∠CAB的度数为(
)A.35° B.45° C.55° D.65°10.下列所述图形中,是轴对称图形但不是中心对称图形的是()A.线段 B.等边三角形 C.正方形 D.平行四边形二、填空题(本大题共6个小题,每小题3分,共18分)11.如图,的顶点落在两条平行线上,点D、E、F分别是三边中点,平行线间的距离是8,,移动点A,当时,EF的长度是______.12.已知正比例函数的图像经过点M(-2,1)、Ax1,y1、Bx2,y13.如图,宽为的长方形图案由8个相同的小长方形拼成,若小长方形的边长为整数,则的值为__________.14.如图,在平面直角坐标系中,函数y=x和y=﹣x的图象分别为直线l1,l2,过点A1(1,﹣)作x轴的垂线交11于点A2,过点A2作y轴的垂线交l2于点A3,过点A3作x轴的垂线交l1于点A4,过点A4作y轴的垂线交l2于点A5,…依次进行下去,则点A2018的横坐标为_____.15.如图,在Rt△ABC中,∠C=90°,AM是BC边上的中线,cos∠AMC,则tan∠B的值为__________.16.如图,把正方形铁片OABC置于平面直角坐标系中,顶点A的坐标为(3,0),点P(1,2)在正方形铁片上,将正方形铁片绕其右下角的顶点按顺时针方向依次旋转90°,第一次旋转至图①位置,第二次旋转至图②位置…,则正方形铁片连续旋转2017次后,点P的坐标为____________________.三、解答题(共8题,共72分)17.(8分)如图,AC是⊙O的直径,PA切⊙O于点A,点B是⊙O上的一点,且∠BAC=30°,∠APB=60°.(1)求证:PB是⊙O的切线;(2)若⊙O的半径为2,求弦AB及PA,PB的长.18.(8分)小晗家客厅装有一种三位单极开关,分别控制着A(楼梯)、B(客厅)、C(走廊)三盏电灯,在正常情况下,小晗按下任意一个开关均可打开对应的一盏电灯,既可三盏、两盏齐开,也可分别单盏开.因刚搬进新房不久,不熟悉情况.若小晗任意按下一个开关,正好楼梯灯亮的概率是多少?若任意按下一个开关后,再按下另两个开关中的一个,则正好客厅灯和走廊灯同时亮的概率是多少?请用树状图或列表法加以说明.19.(8分)已知反比例函数y=kx的图象过点(1)试求该反比例函数的表达式;(2)M(m,n)是反比例函数图象上的一动点,其中0<m<3,过点M作直线MB∥x轴,交y轴于点B;过点A作直线AC∥y轴,交x轴于点C,交直线MB于点D.当四边形OADM的面积为6时,请判断线段BM与DM的大小关系,并说明理由.20.(8分)如图,在城市改造中,市政府欲在一条人工河上架一座桥,河的两岸PQ与MN平行,河岸MN上有A、B两个相距50米的凉亭,小亮在河对岸D处测得∠ADP=60°,然后沿河岸走了110米到达C处,测得∠BCP=30°,求这条河的宽.(结果保留根号)21.(8分)如图是一副扑克牌中的四张牌,将它们正面向下冼均匀,从中任意抽取两张牌,用画树状图(或列表)的方法,求抽出的两张牌牌面上的数字之和都是偶数的概率.22.(10分)某汽车销售公司6月份销售某厂家的汽车,在一定范围内,每部汽车的进价与销售有如下关系,若当月仅售出1部汽车,则该部汽车的进价为27万元,每多售一部,所有出售的汽车的进价均降低0.1万元/部.月底厂家根据销售量一次性返利给销售公司,销售量在10部以内,含10部,每部返利0.5万元,销售量在10部以上,每部返利1万元.①若该公司当月卖出3部汽车,则每部汽车的进价为万元;②如果汽车的销售价位28万元/部,该公司计划当月盈利12万元,那么要卖出多少部汽车?(盈利=销售利润+返利)23.(12分)综合与探究:如图1,抛物线y=﹣x2+x+与x轴分别交于A、B两点(点A在点B的左侧),与y轴交于C点.经过点A的直线l与y轴交于点D(0,﹣).(1)求A、B两点的坐标及直线l的表达式;(2)如图2,直线l从图中的位置出发,以每秒1个单位的速度沿x轴的正方向运动,运动中直线l与x轴交于点E,与y轴交于点F,点A关于直线l的对称点为A′,连接FA′、BA′,设直线l的运动时间为t(t>0)秒.探究下列问题:①请直接写出A′的坐标(用含字母t的式子表示);②当点A′落在抛物线上时,求直线l的运动时间t的值,判断此时四边形A′BEF的形状,并说明理由;(3)在(2)的条件下,探究:在直线l的运动过程中,坐标平面内是否存在点P,使得以P,A′,B,E为顶点的四边形为矩形?若存在,请直接写出点P的坐标;若不存在,请说明理由.24.某居民小区一处圆柱形的输水管道破裂,维修人员为更换管道,需确定管道圆形截面的半径,下面是水平放置的破裂管道有水部分的截面.若这个输水管道有水部分的水面宽,水面最深地方的高度为4cm,求这个圆形截面的半径.
参考答案一、选择题(共10小题,每小题3分,共30分)1、C【解析】
由题可知“水平底”a的长度为3,则由“矩面积”为18可知“铅垂高”h=6,再分>2或t<1两种情况进行求解即可.【详解】解:由题可知a=3,则h=18÷3=6,则可知t>2或t<1.当t>2时,t-1=6,解得t=7;当t<1时,2-t=6,解得t=-4.综上,t=-4或7.故选择C.【点睛】本题考查了平面直角坐标系的内容,理解题意是解题关键.2、C【解析】
作辅助线,构建全等三角形:过D作GH⊥x轴,过A作AG⊥GH,过B作BM⊥HC于M,证明△AGD≌△DHC≌△CMB,根据点D的坐标表示:AG=DH=-x-1,由DG=BM,列方程可得x的值,表示D和E的坐标,根据三角形面积公式可得结论.【详解】解:过D作GH⊥x轴,过A作AG⊥GH,过B作BM⊥HC于M,设D(x,),∵四边形ABCD是正方形,∴AD=CD=BC,∠ADC=∠DCB=90°,易得△AGD≌△DHC≌△CMB(AAS),∴AG=DH=﹣x﹣1,∴DG=BM,∵GQ=1,DQ=﹣,DH=AG=﹣x﹣1,由QG+DQ=BM=DQ+DH得:1﹣=﹣1﹣x﹣,解得x=﹣2,∴D(﹣2,﹣3),CH=DG=BM=1﹣=4,∵AG=DH=﹣1﹣x=1,∴点E的纵坐标为﹣4,当y=﹣4时,x=﹣,∴E(﹣,﹣4),∴EH=2﹣=,∴CE=CH﹣HE=4﹣=,∴S△CEB=CE•BM=××4=7;故选C.【点睛】考查正方形的性质、全等三角形的判定和性质、反比例函数的性质等知识,解题的关键是灵活运用所学知识解决问题,学会构建方程解决问题.3、D【解析】
首先利用平移的性质得到△A1B1C1中点B的对应点B1坐标,进而利用关于x轴对称点的性质得到△A2B2C2中B2的坐标,即可得出答案.【详解】解:把△ABC向右平移4个单位长度得到△A1B1C1,此时点B(-5,2)的对应点B1坐标为(-1,2),则与△A1B1C1关于于x轴对称的△A2B2C2中B2的坐标为(-1,-2),故选D.【点睛】此题主要考查了平移变换以及轴对称变换,正确掌握变换规律是解题关键.4、A【解析】试题解析:设货船的航行速度为海里/时,小时后货船在点处,作于点.由题意海里,海里,在中,所以在中,所以所以解得:故选A.5、D【解析】
根据中心对称图形的定义旋转180°后能够与原图形完全重合即是中心对称图形,以及轴对称图形的定义即可判断出.【详解】解:A.∵此图形旋转180°后不能与原图形重合,∴此图形不是中心对称图形,是轴对称图形,故此选项错误;B.∵此图形旋转180°后能与原图形重合,∴此图形是中心对称图形,不是轴对称图形,故此选项错误;C.∵此图形旋转180°后不能与原图形重合,∴此图形不是中心对称图形,是轴对称图形,故此选项错误;D.∵此图形旋转180°后能与原图形重合,∴此图形是中心对称图形,也是轴对称图形,故此选项正确.故选:D.【点睛】本题考查了中心对称图形与轴对称图形的定义,解题的关键是熟练的掌握中心对称图形与轴对称图形的定义.6、B【解析】试题分析:根据从正面看得到的视图是主视图,从左边看得到的图形是左视图,从上面看得到的图形是俯视图,正方体主视图与左视图可能不同,故选B.考点:简单几何体的三视图.7、D【解析】
根据分式的基本性质,x,y的值均扩大为原来的3倍,求出每个式子的结果,看结果等于原式的即是答案.【详解】根据分式的基本性质,可知若x,y的值均扩大为原来的3倍,A、,错误;B、,错误;C、,错误;D、,正确;故选D.【点睛】本题考查的是分式的基本性质,即分子分母同乘以一个不为0的数,分式的值不变.此题比较简单,但计算时一定要细心.8、C【解析】分析:根据旋转的定义得到即可.详解:因为点A(4,3)经过某种图形变化后得到点B(-3,4),所以点A绕原点逆时针旋转90°得到点B,故选C.点睛:本题考查了旋转的性质:旋转前后两个图形全等,对应点到旋转中心的距离相等,对应点与旋转中心的连线段的夹角等于旋转角.9、C【解析】分析:由同弧所对的圆周角相等可知∠B=∠ADC=35°;而由圆周角的推论不难得知∠ACB=90°,则由∠CAB=90°-∠B即可求得.详解:∵∠ADC=35°,∠ADC与∠B所对的弧相同,∴∠B=∠ADC=35°,∵AB是⊙O的直径,∴∠ACB=90°,∴∠CAB=90°-∠B=55°,故选C.点睛:本题考查了同弧所对的圆周角相等以及直径所对的圆周角是直角等知识.10、B【解析】
根据中心对称图形和轴对称图形的概念对各选项分析判断即可得解.【详解】解:A、线段,是轴对称图形,也是中心对称图形,故本选项不符合题意;
B、等边三角形,是轴对称图形但不是中心对称图形,故本选项符合题意;
C、正方形,是轴对称图形,也是中心对称图形,故本选项不符合题意;
D、平行四边形,不是轴对称图形,是中心对称图形,故本选项不符合题意.
故选:B.【点睛】本题考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.二、填空题(本大题共6个小题,每小题3分,共18分)11、1【解析】
过点D作于点H,根等腰三角形的性质求得BD的长度,继而得到,结合三角形中位线定理求得EF的长度即可.【详解】解:如图,过点D作于点H,
过点D作于点H,,
.
又平行线间的距离是8,点D是AB的中点,
,
在直角中,由勾股定理知,.
点D是AB的中点,
.
又点E、F分别是AC、BC的中点,
是的中位线,
.
故答案是:1.【点睛】考查了三角形中位线定理和平行线的性质,解题的关键是根据平行线的性质求得DH的长度.12、>【解析】分析:根据正比例函数的图象经过点M(﹣1,1)可以求得该函数的解析式,然后根据正比例函数的性质即可解答本题.详解:设该正比例函数的解析式为y=kx,则1=﹣1k,得:k=﹣0.5,∴y=﹣0.5x.∵正比例函数的图象经过点A(x1,y1)、B(x1,y1),x1<x1,∴y1>y1.故答案为>.点睛:本题考查了正比例函数图象上点的坐标特征,解答本题的关键是明确题意,利用正比例函数的性质解答.13、16【解析】
设小长方形的宽为a,长为b,根据大长方形的性质可得5a=3b,m=a+b=a+=,再根据m的取值范围即可求出a的取值范围,又因为小长方形的边长为整数即可解答.【详解】解:设小长方形的宽为a,长为b,由题意得:5a=3b,所以b=,m=a+b=a+=,因为,所以10<<20,解得:<a<,又因为小长方形的边长为整数,a=4、5、6、7,因为b=,所以5a是3的倍数,即a=6,b==10,m=a+b=16.故答案为:16.【点睛】本题考查整式的列式、取值,解题关键是根据矩形找出小长方形的边长关系.14、1【解析】
根据题意可以发现题目中各点的坐标变化规律,从而可以解答本题.【详解】解:由题意可得,A1(1,-),A2(1,1),A3(-2,1),A4(-2,-2),A5(4,-2),…,∵2018÷4=504…2,2018÷2=1009,∴点A2018的横坐标为:1,故答案为1.【点睛】本题考查一次函数图象上点的坐标特征,解答本题的关键是明确题意,找出题目中点的横坐标的变化规律.15、【解析】
根据cos∠AMC,设,,由勾股定理求出AC的长度,根据中线表达出BC即可求解.【详解】解:∵cos∠AMC,,设,,∴在Rt△ACM中,∵AM是BC边上的中线,∴BM=MC=3x,∴BC=6x,∴在Rt△ABC中,,故答案为:.【点睛】本题考查了锐角三角函数值的求解问题,解题的关键是熟记锐角三角函数的定义.16、(6053,2).【解析】
根据前四次的坐标变化总结规律,从而得解.【详解】第一次P1(5,2),第二次P2(8,1),第三次P3(10,1),第四次P4(13,1),第五次P5(17,2),…发现点P的位置4次一个循环,∵2017÷4=504余1,P2017的纵坐标与P1相同为2,横坐标为5+3×2016=6053,∴P2017(6053,2),故答案为(6053,2).考点:坐标与图形变化﹣旋转;规律型:点的坐标.三、解答题(共8题,共72分)17、(1)见解析;(2)2【解析】试题分析:(1)连接OB,证PB⊥OB.根据四边形的内角和为360°,结合已知条件可得∠OBP=90°得证;(2)连接OP,根据切线长定理得直角三角形,根据含30度角的直角三角形的性质即可求得结果.(1)连接OB.∵OA=OB,∴∠OBA=∠BAC=30°.∴∠AOB=80°-30°-30°=20°.∵PA切⊙O于点A,∴OA⊥PA,∴∠OAP=90°.∵四边形的内角和为360°,∴∠OBP=360°-90°-60°-20°=90°.∴OB⊥PB.又∵点B是⊙O上的一点,∴PB是⊙O的切线.(2)连接OP,∵PA、PB是⊙O的切线,∴PA=PB,∠OPA=∠OPB=,∠APB=30°.在Rt△OAP中,∠OAP=90°,∠OPA=30°,∴OP=2OA=2×2=1.∴PA=OP2-OA2=2∵PA=PB,∠APB=60°,∴PA=PB=AB=2.考点:此题考查了切线的判定、切线长定理、含30度角的直角三角形的性质点评:要证某线是圆的切线,已知此线过圆上某点,连接圆心与这点(即为半径),再证垂直即可.18、(1);(2).【解析】试题分析:(1)、3个等只有一个控制楼梯,则概率就是1÷3;(2)、根据题意画出树状图,然后根据概率的计算法则得出概率.试题解析:(1)、小晗任意按下一个开关,正好楼梯灯亮的概率是:(2)、画树状图得:结果:(A,B)、(A,C)、(B,A)、(B,C)、(C,A)、(C,B)∵共有6种等可能的结果,正好客厅灯和走廊灯同时亮的有2种情况,∴正好客厅灯和走廊灯同时亮的概率是=.考点:概率的计算.19、(1)y=6x;(2)MB=【解析】
(1)将A(3,2)分别代入y=kx
,y=ax中,得a、k(2)有S△OMB=S△OAC=12×k=3
,可得矩形OBDC的面积为12;即OC×OB=12
;进而可得m、n的值,故可得BM与DM【详解】(1)将A(3,2)代入y=kx中,得2=k∴反比例函数的表达式为y=6(2)BM=DM,理由:∵S△OMB=S△OAC=12×k∴S矩形OBDC=S四边形OADM+S△OMB+S△OAC=3+3+6=12,即OC·OB=12,∵OC=3,∴OB=4,即n=4,∴m=6∴MB=32,MD=3-32=3【点睛】本题考查了待定系数法求反比例函数和正比例函数解析式,反比例函数比例系数的几何意义,矩形的性质等知识.熟练掌握待定系数法是解(1)的关键,掌握反比例函数系数的几何意义是解(2)的关键.20、米.【解析】试题分析:根据矩形的性质,得到对边相等,设这条河宽为x米,则根据特殊角的三角函数值,可以表示出ED和BF,根据EC=ED+CD,AF=AB+BF,列出等式方程,求解即可.试题解析:作AE⊥PQ于E,CF⊥MN于F.∵PQ∥MN,∴四边形AECF为矩形,∴EC=AF,AE=CF.设这条河宽为x米,∴AE=CF=x.在Rt△AED中,∵PQ∥MN,∴在Rt△BCF中,∵EC=ED+CD,AF=AB+BF,解得∴这条河的宽为米.21、【解析】
根据列表法先画出列表,再求概率.【详解】解:列表如下:23562(2,3)(2,5)(2,6)3(3,2)(3,5)(3,6)5(5,2)(5,3)(5,6)6(6,2)(6,3)(6,5)由表可知共有12种等可能结果,其中数字之和为偶数的有4种,所以P(数字之和都是偶数).【点睛】此题重点考查学生对概率的应用,掌握列表法是解题的关键.22、解:(1)22.1.(2)设需要售出x部汽车,由题意可知,每部汽车的销售利润为:21-[27-0.1(x-1)]=(0.1x+0.9)(万元),当0≤x≤10,根据题意,得x·(0.1x+0.9)+0.3x=12,整理,得x2+14x-120=0,解这个方程,得x1=-20(不合题意,舍去),x2=2.当x>10时,根据题意,得x·(0.1x+0.9)+x=12,整理,得x2+19x-120=0,解这个方程,得x1=-24(不合题意,舍去),x2=3.∵3<10,∴x2=3舍去.答:要卖出2部汽车.【解析】一元二次方程的应用.(1)根据若当月仅售出1部汽车,则该部汽车的进价为27万元,每多售出1部,所有售出的汽车的进价均降低0.1万元/部,得出该公司当月售出3部汽车时,则每部汽车的进价为:27-0.1×2=22.1.,(2)利用设需要售出x部汽车,由题意可知,每部汽车的销售利润,根据当0≤x≤10,以及当x>10时,分别讨论得出即可.23、(1)A(﹣1,0),B(3,0),y=﹣x﹣;(2)①A′(t﹣1,t);②A′BEF为菱形,见解析;(3)存在,P点坐标为(,)或(,﹣).【解析】
(1)通过解方程﹣x2+x+=0得A(−1,0),B(3,0),然后利用待定系数法确定直线l的解析式;(2)①作A′H⊥x轴于H,如图2,利用OA=1,OD=得到∠OAD=60°,再利用平移和对称的性质得到EA=EA′=t,∠A′EF=∠AEF=60°,然后根据含30度的直角三角形三边的关系表示出A′H,EH即可得到A′的坐标;②把A′(t−1,t)代入y=−x2+x+得−(t−1)2+(t−1)+=t,解方程得到t=2,此时A′点的坐标为(2,),E(1,0),然后通过计算得到AF=BE=2,A′F∥BE,从而判断四边形A′BEF为平行四边形,然后加上EF=BE可判定四边形A′BEF为菱形;(3)讨论:当A′B⊥BE时,四边形A′BEP为矩形,利用点A′和点B的横坐标相同得到t−1=3,解方程求出t得到A′(3,),再利用矩形的性质可写出对应的P点坐标;当A′B⊥EA′,如图4,四边形A′BPE为矩形,作A′Q⊥x轴于Q,先确
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《酒店消防培训》课件2
- 孕期肛门坠胀的健康宣教
- 鼻恶性肉芽肿的健康宣教
- 《计算机辅助制》课件
- 白塞氏病的健康宣教
- 睡眠呼吸暂停综合征的健康宣教
- 孕期室性早搏的健康宣教
- 激素依赖性皮炎的临床护理
- 妊娠合并淋巴瘤的健康宣教
- 急性喉气管炎的健康宣教
- 鲁教版九年级英语全一册 unit9学案
- (2024年)大学生就业指导
- 空调线路改造施工组织方案
- 大学生流量卡创业计划书
- MEMS工艺(9腐蚀技术)
- 应急救灾物资采购投标方案(技术方案)
- 2023年高考物理十年高考物理12抛体运动一解析
- 2024年第九届全国大学生预防艾滋病知识竞赛考试题库(附答案)
- 企业食堂员工年终工作总结
- 苏州出租车从业资格证题库
- 会计应付岗位总结汇报
评论
0/150
提交评论