第一章常用试验设计_第1页
第一章常用试验设计_第2页
第一章常用试验设计_第3页
第一章常用试验设计_第4页
第一章常用试验设计_第5页
已阅读5页,还剩78页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

一、完全随机设计二、配对法设计三、(希腊)拉丁方设计四、裂区设计五、条区设计六、交叉设计七、嵌套设计1.10常用的试验设计ADABCBCBCADD例1:品种比较试验,四个品种,三次重复。一、完全随机设计(CompleteRandomDesign)各种处理完全随机安排的试验设计。只有重复和随机,而未实行局部控制。常用的试验设计例:6种生长素各注射10尾鱼苗,共60条鱼,三个月后捞起来称重,比较不同生长素对鱼生长的促进作用。这是一个有6种处理,10次重复的完全随机试验。常用的试验设计特点:

只有重复和随机,未实行局部控制。

优点:简单、方便,易于掌握。

单因子、复因子试验均可。缺点:未实行局部控制,精确度较低。常用的试验设计适用范围:

要求试验条件比较均匀的场合,常用于组培、温室、细菌培养及动物试验。统计分析:两个处理时常用t检验。多个处理时常用方差分析。统计模型:

常用的试验设计观测值,总平均值,处理效应,误差二、配对法设计(PairedDesign)试验说明:1、配对设计是将受试对象按相同、相近的特征、性质或条件配成对子,再将每对中两个受试对象分别随机地施加两个不同处理(含对照)。2、同一对内条件要求尽量一致,不同对间允许有些差异。常用的试验设计二、配对法设计配对方式:1、自身配对:指在同一试验对象上进行处理前和处理后的对比。如:同一食品储藏前后的变化等。2、同源配对:指将非处理条件相近的试验对象组成对子,分别施加不同的处理。如:常将种系、窝别、性别相同、年龄、体重相近的动物配成对。常用的试验设计配对法设计TCTCTTTCTTCTCTT第二对第三对第五对第四对第一对常用的试验设计如:两种苹果保鲜剂效果比较试验:常用的试验设计配对法设计优点:1.设计简单,易于掌握,实施方便。2.对试验条件要求不高,不同对间允许有差异。3.处理间可比性强,试验精度比较高。

常用的试验设计缺点:1.只限于两个处理,不能用于复因子试验。2.对照占1/2,比较浪费配对法设计适用范围:1.配对法设计常用于两个处理或一个处理与一个原有处理的比较。

2.配对法设计初、高级试验均可使用。常用的试验设计配对法设计的分析:配对法t检验第一步:作统计假设第二步:计算统计量自由度:常用的试验设计的标准差第三步:作统计推断和统计结论配对法设计的SAS程序:DataST;Inputctrtrt@@;Cards;数据;ProcTtestdata=ST;Pairedctr*trt;Run;常用的试验设计三、拉丁方设计(LatinSquareDesign)大臣们向当时的数学家欧拉请教,引起了大家的兴趣,导致了拉丁方的问世。其中均衡分布的思想也是析因设计、正交设计、均匀设计等新设计方法的思想基础。常用的试验设计18世纪,欧洲的普鲁士国王腓特烈大帝要举行一次阅兵式,要求部队排成6x6的方阵,每个方阵的行和列都要由6种部队的6种军官组成,不得重复和空缺。三、拉丁方设计拉丁方的行、列和处理间都存在相互正交的关系。常用的试验设计

用r个拉丁字母排成r行r列的方阵,使每行每列中每个字母都只能出现一次,这样的方阵叫r阶拉丁方或r×r拉丁方。

拉丁方能保证试验的行、列都是随机区组的方形排列。即在两个方向上实行了的局部控制。三、拉丁方设计EACBEDBAEDCCEDBACAEDACBDB

Fisher采用拉丁方来设计试验,就成为拉丁方设计。如:右侧即为一个5×5的拉丁方设计。常用的试验设计标准方:第一行和第一列均为顺序排列的拉丁方。拉丁方数量很多,但标准方较少。2×2拉丁方其标准方1个,拉丁方共有2个ABBABAAB3×3拉丁方其标准方1个,拉丁方共有12个ABCBCACAB常用的试验设计4×4拉丁方其标准方4个,拉丁方共有576个(一)(二)(三)(四)ABCDABCDABCDABCDBADCBCDABDACBADCCDBACDABCADBCDABDCABDABCDCBADCBA常用的试验设计ABCDEBAECDCDAEBDEBACECDBA5×5拉丁方其标准方56个,其拉丁方共有161280个。5×5拉丁方ABCDEBADECCEBADDCEBAEDACBABCDEBAECDCEDABDCBEAEDABCABCDEBADECCDEABDEBCAECABD常用的试验设计

6×6拉丁方7×7拉丁方

ABCDEFABCDEFGBFDCAEBCDEFGACDEFBACDEFGABDAFECBDEFGABCECABFDEFGABCDFEBADCFGABCDEGABCDEF其中,7×7拉丁方共有61万亿多个排列。常用的试验设计

8×8拉丁方ABCDEFGHBCDEFGHACDEFGHABDEFGHABCEFGHABCDFGHABCDEGHABCDEFHABCDEFG常用的试验设计

9×9拉丁方ABCDEFGHKBCAEFDHKGCABFDEKGHDEFGHKABCEFDHKGBCAFDEKGHCABGHKABCDEFHKGBCAEFDKGHCABFDE拉丁方设计特点:行数、列数、处理数、重复数都相等。一般处理数限定在4-10个为宜。可以同时安排三个因子、两个因子和一个区组控制或者一个因子和两个区组控制。

常用的试验设计缺点:安排多个因子时,对试险条件的均匀性要求较高。2.安排一个因子和两个区组控制时,优点是拉丁方设计实行了行、列双向区组控制,试验精度很高。常用的试验设计1.同时安排因子时,要求因子间不存在交互作用。

1,4,5,3,2

5,1,2,4,3拉丁方设计试验布置⑴按处理数选择合适的标准拉丁方;

⑵对列进行随机调动;⑶对行进行随机调动;⑷对处理进行随机调动;以有5个处理的试验为例。DCAEACBBDEDDECEABCEABDBCACAEBDABDECDCEABDCEABEDBCA⑶如果抽签的结果是:5,1,2,4,3ABCDEEBACDCDAEBDEBACECDBA⑷如果抽签的结果是:2,5,4,1,3。EEEEEDDDDDAAAAA2222255555BBBBBCCCCC444441111133333⑴在表2.1选用一个5×5选择标准方⑵如果抽签的结果是:1,4,5,3,2常用的试验设计拉丁方设计例1:进行不同颜色捕蛾灯的捕螟蛾效果比较试验。捕蛾灯的颜色是主要的试验因子,但灯位和捕蛾日期这两种因子也会影响捕蛾效果,可以作为控制因子,采用拉丁方设计,可以有效地控制这两种误差。如下图所示:

常用的试验设计E

12345

天位第一天第二天第三天第四天第五天1DBCAE2EDACB3ACBED4BAEDC5CEDBADACB

A、B、C、D、E为不同颜色的色光灯。兰、绿、黄、红、白色第一天常用的试验设计拉丁方设计的统计分析:方差分析常用的试验设计统计模型:观测值,总平均值,行效应列效应,处理效应,随机误差自由度:df行=df列=df处理=r-1

dfe=(r-1)(r-2)拉丁方设计的方差分析常用的试验设计SAS分析程序:PROC

GLMData=sasuser.latin1;

ClassRCT;

ModelY=RCT/ss3;

MeansT/duncan;Run;多重拉丁方设计用多个拉丁方安排同一试验的试验设计称为多重拉丁方设计。特点:一个用拉丁方设计的试验,安排在多年或多地点进行自然构成多重拉丁方设计。若试验处理数较少或试验条件的限制,采用小于5阶的拉丁方安排试验,多采用多重拉丁方设计,以增大误差项自由度。

常用的试验设计如:在两地进行的4个棉花品种的4×4拉丁方设计,采用多重拉丁方设计。麦间套种棉花地麦后播种棉花地常用的试验设计CBADBDCADCBAACBDBADCDBACADCBCADB多重拉丁方设计的统计分析:方差分析常用的试验设计统计模型:观测值,总平均值,行效应列效应,方间效应,处理效应处理和方间交互效应,随机误差多重拉丁方设计的方差分析常用的试验设计SAS分析程序:PROC

GLMData=sasuser.latin4;

ClassLRCT;

ModelY=L*RL*CLTL*T/ss3;

MeansT/duncan;Run;希腊拉丁方设计(Greco-LatinsquareDesign)排列特点:如果把一个用拉丁字母表示的r阶拉丁方和一个用希腊字母表示的r阶拉丁方叠加在一起。两个叠加后的拉丁方中,每一个拉丁字母和希腊字母的组合出现且仅出现一次,则称这两个拉丁方是正交的,这样的拉丁方设计称为希腊拉丁方设计。希腊字母可视为另一个因子的r个水平。常用的试验设计希腊拉丁方设计示例(4×4)因子安排:希腊拉丁方可以安排三个区组控制和一个因子,或者两个区组控制和两个因子,或者四个无相互作用的因子。ABCDBADCCDABDCBA常用的试验设计希腊拉丁方设计正交拉丁方:

一个r阶拉丁方最多可以有r-1个互为正交的拉丁方,成为正交拉丁方完全系。除6阶拉丁方外,大于3阶的拉丁方都存在正交的拉丁方。其实可以把更多的正交拉丁方组合在一起构成超希腊拉丁方使用,可以安排更多的因子。常用的试验设计希腊拉丁方设计注意:希腊拉丁方、超希腊拉丁方试验设计,可以安排更多的试验因子,而试验次数不变,则误差项的自由度就会相应减少,从而降低了试验的灵敏度。值得特别关注!希腊拉丁方设计的试验也采用与拉丁方设计相似的方差分析方法。常用的试验设计希腊拉丁方设计的统计分析:方差分析常用的试验设计SAS分析程序:PROC

GLMData=sasuser.latin1;

ClassRCGT;

ModelY=RCGT/ss3;

MeansT/duncan;Run;概念:把一个试验因子完全区组内的各个试验区分裂成几个更小的小区,用以引进另一个试验因子,称为裂区设计。1.先将一个因子作随机区组排列,每个小区称作整区。在同一个区组的各个整区中,随机安排这个因子的各个水平,即整区处理。四、裂区设计(Split-plotDesign)常用的试验设计2.将每个整区划分为若干个小小区,小小区称作裂区,在每个整区中把另一个因子的各个水平随机安排在各个裂区上,这个因子的各个水平称为裂区处理。3.裂区设计的区组数≥12/(裂区处理数-1)(整区处理数-1)+1为宜。常用的试验设计裂区设计裂区设计与两因子随机区组设计近似,但是有一些区别。区别之一是两因子随机区组设计在每一区组内A和B两因子的ab个处理组合是完全随机化的。而裂区设计的随机化过程只能在A因子的a个处理和B因子的b个处理之间进行,不能完全随机化。裂区设计与两因子随机区组设计的区别ˉ区别之二是方差分析计算时随机误差项的选择,两因子随机区组设计方差分析时用一个随机误差项。裂区设计方差分析时有两个随机误差项,区组和整区因子用整区的误差项来考察。而裂区因子和交互作用则用裂区地误差项来考察。裂区设计与两因子随机区组设计的区别裂区设计的原则是:因子有主次之分的,主要因子的各个水平安排在裂区,次要因子的各个水平安排在整区。只有这样,主要因子的各水平的重复数才会大大的多于次要因子的各个水平的重复数,才能获得较高的精度。常用的试验设计实例1:某作物病虫害防治试验。研究因子两个:药剂种类A和喷雾方式B。参试药剂四种:A1,A2,A3,A4;喷雾方式两种:喷叶面B1和喷叶背B2;药剂为主要因子,喷雾方式为次要因子;重复四次试验。常用的试验设计实例2:现有一包含四个品种苹果的比较试验,三次重复的随机区组。

田间排列如图。AAABBBCCCDDD几年后,苹果结果了,为了考察施肥对不同品种的效应,又要安排一个由三种肥料(N、P、K)构成的考察因子。用裂区设计。PKNKNPNPKPNKNKPKPNPNKNKPKNPNPKPKNKNP常用的试验设计优点:

1.对于田间试验实施比较方便。2.能利用原有的试验条件及试验材料,进行深一步的研究。3.某个因子可获得较高的精确度。缺点:1.资料的统计分析比较复杂,不易掌握。2.次要因子的精确度较低。常用的试验设计适用范围

1.两因子试验中,两个因子要求的精确度不一时,可用裂区设计。2.两个因子的各个水平需要的面积大小不一时,亦可用裂区设计。3.在原有的试验的基础上,临时加入一个研究因子时,可用裂区设计。常用的试验设计实例3:欲研究蛇毒的抗肿瘤作用,肿瘤采用四种不同的瘤株,蛇毒采用四种不同的浓度(含对照)。选用48只小白鼠,根据试验条件(重要的非试验因素)划分为3个区组,每区组16只,每区组随机地分成4个小组(每小组4只),按小组分别接种四种不同的瘤株;生长一段时间后,每小组4只小白鼠各随机注射四种浓度的蛇毒处理,处理后观测相应的瘤重。结果见下表。常用的试验设计瘤株蛇毒浓度瘤重(g)区组1区组2区组3S18000.800.760.360.030.360.260.310.050.170.250.160.070.120.130.11HS00.740.430.570.030.500.460.320.050.420.200.320.070.360.260.20EC00.310.550.320.030.200.210.260.050.380.180.200.070.250.150.14ARS00.480.570.370.030.380.300.330.050.240.270.290.070.220.250.27常用的试验设计裂区设计的统计分析:方差分析常用的试验设计统计模型:观测值,总平均值,区组效应主区效应,主区误差,裂区效应交互效应,裂区误差裂区设计的方差分析常用的试验设计SAS分析程序:PROC

MixedData=yourdata;

ClassBlockAB;

ModelY=ABA*B;

RandomBlockBlock*A;

LSMeansAB/pdiff;Run;五、条区设计(Strip-plotDesign)定义:条区设计也是两因子试验的一种设计方法,它是把单因子随机区组设计的小区,按垂直其长边方向划分成若干个小小区,安排进第二个因子。条区设计与裂区设计最大的不同:两个因子的各个水平互为区组。

常用的试验设计考察水稻的五个品种(A)在三种植密度(B)下的产量的试验,三次重复。条区设计实例:特点:条区设计的两个因子互为区组,两个因子都有较大的面积,便于管理和实施。采用条区设计的两个因子的主效应分析精度比较低,但对因子间交互作用的分析精度比较高。常用的试验设计应用范围:(1)从操作或管理等考虑,两个因子都需要较大的小区面积,可以采用条区设计。如:耕作、喷药、灌溉或施肥等试验,采用较大的小区面积,操作管理较方便。(2)参试的主要目的,不是主要研究两个因子的主效应,而是主要考察因子间交互作用时,可采用条区设计。常用的试验设计条区设计的统计分析:方差分析常用的试验设计统计模型:观测值,总平均值,区组效应因子A效应,A区误差,因子B效应

B区误差,交互效应,随机误差条区设计的方差分析常用的试验设计SAS分析程序:PROC

MixedData=sasuser.yourdata;

ClassRepAB;

ModelY=ABA*B;

RandomRepRep*ARep*B;

LSMeansAB/pdiff;Run;六、交叉设计(Change-overDesign)定义:交叉设计又称为交替设计、反转设计,是指在同一试验中将试验单位分期进行、交叉反复两次及其以上的试验设计方法。在动物试验中,为提高精度,通常要求选用在遗传及生理上相同或相似的试验动物,但这在实践中往往不易满足。如进行奶牛泌乳试验,要求奶牛品种、性别、年龄、胎次、体重等条件都相同。

常用的试验设计常用交叉设计表常用的试验设计组别时期III1处理1处理22处理2处理12×2交叉设计

3×3交叉设计组别时期IIIIII1处理1处理2处理32处理1处理3处理23处理2处理1处理34处理2处理3处理15处理3处理1处理26处理3处理2处理1交叉设计特点:1、试验对象一般存在一些差异,但以自身作为对照,样本量少,但精度较高。2、试验处理数较少,一般2-4个处理。3、有些效应混杂在一起,统计分析比较复杂。常用的试验设计交叉设计优缺点:1.优点:交叉设计可以消除个体间及试验时期间的差异对试验结果的影响,进一步突出处理效应,提高了试验的精度。交叉设计特别适用于个体差异较大的动物试验,如大动物和兽医学试验等。2.缺点:若与多因子试验相比,不能得到因子之间交互作用的信息。常用的试验设计交叉设计注意的问题:1.处理因子、时期、个体间不存在交互作用如果交叉试验中处理因子、时期、个体有交互作用,这些交互作用效应就会归入误差项中,使误差估计值增大,从而降低试验的精度。常用的试验设计交叉设计注意的问题

:2、要注意试验处理是否有残效,在交叉试验中,处理轮流更换,如果前一种处理有效应残存,可设置适当的预试期和间歇期。对于处理残效不能消失的试验,或带有破坏性且不能恢复的试验,则不宜采用交叉设计。常用的试验设计交叉设计统计分析——方差分析统计模型:观测值,总平均值,处理效应顺序效应,个体随机效应试验期效应,随机误差常用的试验设计交叉设计示例Theexamplewiththeeffectoftwotreatmentsonmilkyieldofdairycowsisasfollows.常用的试验设计ORDERI Period Treatment Cow1 Cow4 Cow5 Cow9 Cow10 1 1 31 34 43 28 25 2 2 27 25 38 20 19 ORDERII Period Treatment Cow2 Cow3 Cow6 Cow7 Cow8 1 2 22 40 40 33 18 2 1 21 39 41 34 20 交叉设计SAS程序:DATACows;INPUTperiodtrtordercowmilk@@;DATALINES;111131122222221127212221111434122340221425212339111543122640常用的试验设计22153821264111192812273322192021273411110251228182211019212820;常用的试验设计交叉设计SAS程序:PROCMIXEDData=Cows;CLASStrtcowperiodorder;MODELmilk=ordertrtperiod;RANDOMcow(order);LSMEANS

trt/PDIFF;RUN;常用的试验设计交叉设计SAS程序:嵌套设计又被称为巢式设计(NestedDesign)、系统分组设计或组内又分亚组的设计。是指一个因子的效应嵌套在另一个因子之下。根据因子数的不同,嵌套设计可分为二级嵌套(二因子)、三级嵌套(三因子)等嵌套设计。七、嵌套设计(HierarchalDesign)

(1)情形一受试对象本身具有按其隶属关系进行分组再分组的各种因子。比如:某品种作物在不同地区的几个农场里产量比较;幼畜的出生体重受父系和母系影响的大小等。

嵌套设计应用(2)情形二受试对象本身并非具有分组再分组的各种分组因子,而是各之间在专业上有主次之分。区分嵌套设计与析因设计的关键是看因子之间的地位是否平等,若因子的地位平等则属于析因设计,不平等则属于嵌套设计。嵌套设计应用例1(嵌套关系):选取某种植物3个品种(A)的植株,在每一株内选取2片叶子(B)

,用取样器从每一片叶子上选取同样大小的两块(重复)进行检测。不能把B因子的2个水平简单地看作是与A因子3个水平的全面组合,而是分别嵌套在A1、A2、A3三个水平之下,相当于B因子有6个水平,但它们所产生的离差平方和中又包含了A因子的作用,一般用它作为度量A因子作用大小的误差项。嵌套设计举例1例2(嵌套关系):考察三头大约克公猪和不同母猪的所生的仔猪,每窝随机抽取6头仔猪测量断奶体重(Weight),试分析这三头公猪对仔猪断奶的影响。公猪母猪仔猪断奶体重(kg)AA121.016.517.519.520.019.0A214.015.516.518.016.015.0BB124.022.524.020.022.023.0B219.019.520.023.519.021.0B316.016.015.520.514.017.5CC115.013.013.512.516.513.5C219.021.021.519.015.521.0C322.521.021.519.014.520.0嵌套设计举例2例3(因子分主次):为了研究某种抗菌药的效果,考虑3个因子对小白鼠进行试验。因子A可分为A1(对照组不用抗菌药)、A2(试验组用抗菌药);因子B(小白鼠代次)可分为B1(第1代)、B2(第2代)、B3(第3代);因子C(性别)可分为C1(雄性)、C2(雌性)。让第1代小白鼠被这种细菌感染,按雌雄分别统计对照组和试验组小白鼠的存活率,对于第2代、第2代重复上面的试验,……,观测小白鼠存活率。由专业知识得

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论