2023届成都十考试题猜想数学试卷含解析及点睛_第1页
2023届成都十考试题猜想数学试卷含解析及点睛_第2页
2023届成都十考试题猜想数学试卷含解析及点睛_第3页
2023届成都十考试题猜想数学试卷含解析及点睛_第4页
2023届成都十考试题猜想数学试卷含解析及点睛_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2023中考数学模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(共10小题,每小题3分,共30分)1.甲、乙两人分别以4m/s和5m/s的速度,同时从100m直线型跑道的起点向同一方向起跑,设乙的奔跑时间为t(s),甲乙两人的距离为S(m),则S关于t的函数图象为()A. B. C. D.2.下列式子一定成立的是()A.2a+3a=6a B.x8÷x2=x4C. D.(﹣a﹣2)3=﹣3.若,则3(x-2)2A.﹣6B.6C.18D.304.若一个凸多边形的内角和为720°,则这个多边形的边数为A.4 B.5 C.6 D.75.如图,C,B是线段AD上的两点,若,,则AC与CD的关系为()A. B. C. D.不能确定6.初三(1)班的座位表如图所示,如果如图所示建立平面直角坐标系,并且“过道也占一个位置”,例如小王所对应的坐标为(3,2),小芳的为(5,1),小明的为(10,2),那么小李所对应的坐标是()A.(6,3) B.(6,4) C.(7,4) D.(8,4)7.已知,如图,AB//CD,∠DCF=100°,则∠AEF的度数为()A.120° B.110° C.100° D.80°8.在下列实数中,﹣3,,0,2,﹣1中,绝对值最小的数是()A.﹣3 B.0 C. D.﹣19.一个几何体的三视图如图所示,则该几何体的形状可能是()A.B.C.D.10.已知一组数据:12,5,9,5,14,下列说法不正确的是()A.平均数是9 B.中位数是9 C.众数是5 D.极差是5二、填空题(本大题共6个小题,每小题3分,共18分)11.若正多边形的一个内角等于120°,则这个正多边形的边数是_____.12.数据:2,5,4,2,2的中位数是_____,众数是_____,方差是_____.13.在平面直角坐标系中,将点A(﹣3,2)向右平移3个单位长度,再向下平移2个单位长度,那么平移后对应的点A′的坐标是_____.14.分解因式:4a3b﹣ab=_____.15.对于实数a,b,定义运算“*”:a*b=,例如:因为4>2,所以4*2=42﹣4×2=8,则(﹣3)*(﹣2)=___________.16.分解因式:a2b−8ab+16b=_____.三、解答题(共8题,共72分)17.(8分)如图1,△ABC与△CDE都是等腰直角三角形,直角边AC,CD在同一条直线上,点M、N分别是斜边AB、DE的中点,点P为AD的中点,连接AE,BD,PM,PN,MN.(1)观察猜想:图1中,PM与PN的数量关系是,位置关系是.(2)探究证明:将图1中的△CDE绕着点C顺时针旋转α(0°<α<90°),得到图2,AE与MP、BD分别交于点G、H,判断△PMN的形状,并说明理由;(3)拓展延伸:把△CDE绕点C任意旋转,若AC=4,CD=2,请直接写出△PMN面积的最大值.18.(8分)为了解某校九年级男生的体能情况,体育老师随机抽取部分男生进行引体向上测试,并对成绩进行了统计,绘制出如下的统计图①和图②,请跟进相关信息,解答下列问题:(1)本次抽测的男生人数为,图①中m的值为;(2)求本次抽测的这组数据的平均数、众数和中位数;(3)若规定引体向上5次以上(含5次)为体能达标,根据样本数据,估计该校350名九年级男生中有多少人体能达标.19.(8分)随着“互联网+”时代的到来,一种新型打车方式受到大众欢迎,该打车方式的总费用由里程费和耗时费组成,其中里程费按x元/公里计算,耗时费按y元/分钟计算(总费用不足9元按9元计价).小明、小刚两人用该打车方式出行,按上述计价规则,其打车总费用、行驶里程数与打车时间如表:时间(分钟)里程数(公里)车费(元)小明8812小刚121016(1)求x,y的值;(2)如果小华也用该打车方式,打车行驶了11公里,用了14分钟,那么小华的打车总费用为多少?20.(8分)如图,已知▱ABCD.作∠B的平分线交AD于E点。(用尺规作图法,保留作图痕迹,不要求写作法);若▱ABCD的周长为10,CD=2,求DE的长。21.(8分)解不等式组:.22.(10分)如图,已知抛物线(>0)与轴交于A,B两点(A点在B点的左边),与轴交于点C。(1)如图1,若△ABC为直角三角形,求的值;(2)如图1,在(1)的条件下,点P在抛物线上,点Q在抛物线的对称轴上,若以BC为边,以点B,C,P,Q为顶点的四边形是平行四边形,求P点的坐标;(3)如图2,过点A作直线BC的平行线交抛物线于另一点D,交轴交于点E,若AE:ED=1:4,求的值.23.(12分)已知点O是正方形ABCD对角线BD的中点.(1)如图1,若点E是OD的中点,点F是AB上一点,且使得∠CEF=90°,过点E作ME∥AD,交AB于点M,交CD于点N.①∠AEM=∠FEM;②点F是AB的中点;(2)如图2,若点E是OD上一点,点F是AB上一点,且使,请判断△EFC的形状,并说明理由;(3)如图3,若E是OD上的动点(不与O,D重合),连接CE,过E点作EF⊥CE,交AB于点F,当时,请猜想的值(请直接写出结论).24.先化简,再求值:,且x为满足﹣3<x<2的整数.

参考答案一、选择题(共10小题,每小题3分,共30分)1、B【解析】

匀速直线运动的路程s与运动时间t成正比,s-t图象是一条倾斜的直线解答.【详解】∵甲、乙两人分别以4m/s和5m/s的速度,∴两人的相对速度为1m/s,设乙的奔跑时间为t(s),所需时间为20s,两人距离20s×1m/s=20m,故选B.【点睛】此题考查函数图象问题,关键是根据匀速直线运动的路程s与运动时间t成正比解答.2、D【解析】

根据合并同类项、同底数幂的除法法则、分数指数运算法则、幂的乘方法则进行计算即可.【详解】解:A:2a+3a=(2+3)a=5a,故A错误;B:x8÷x2=x8-2=x6,故B错误;C:=,故C错误;D:(-a-2)3=-a-6=-,故D正确.故选D.【点睛】本题考查了合并同类项、同底数幂的除法法则、分数指数运算法则、幂的乘方法则.其中指数为分数的情况在初中阶段很少出现.3、B【解析】试题分析:∵,即x2+4x=4,∴原式=3(x=-3x2-12x+18考点:整式的混合运算—化简求值;整体思想;条件求值.4、C【解析】

设这个多边形的边数为n,根据多边形的内角和定理得到(n﹣2)×180°=720°,然后解方程即可.【详解】设这个多边形的边数为n,由多边形的内角和是720°,根据多边形的内角和定理得(n-2)180°=720°.解得n=6.故选C.【点睛】本题主要考查多边形的内角和定理,熟练掌握多边形的内角和定理是解答本题的关键.5、B【解析】

由AB=CD,可得AC=BD,又BC=2AC,所以BC=2BD,所以CD=3AC.【详解】∵AB=CD,∴AC+BC=BC+BD,即AC=BD,又∵BC=2AC,∴BC=2BD,∴CD=3BD=3AC.故选B.【点睛】本题考查了线段长短的比较,在不同的情况下灵活选用它的不同表示方法,有利于解题的简洁性.同时,灵活运用线段的和、差、倍转化线段之间的数量关系是十分关键的一点.6、C【解析】

根据题意知小李所对应的坐标是(7,4).故选C.7、D【解析】

先利用邻补角得到∠DCE=80°,然后根据平行线的性质求解.【详解】∵∠DCF=100°,∴∠DCE=80°,∵AB∥CD,∴∠AEF=∠DCE=80°.故选D.【点睛】本题考查了平行线性质:两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等.8、B【解析】|﹣3|=3,||=,|0|=0,|2|=2,|﹣1|=1,∵3>2>>1>0,∴绝对值最小的数是0,故选:B.9、D【解析】试题分析:由主视图和左视图可得此几何体上面为台,下面为柱体,由俯视图为圆环可得几何体为.故选D.考点:由三视图判断几何体.视频10、D【解析】分别计算该组数据的平均数、中位数、众数及极差后即可得到正确的答案平均数为(12+5+9+5+14)÷5=9,故选项A正确;重新排列为5,5,9,12,14,∴中位数为9,故选项B正确;5出现了2次,最多,∴众数是5,故选项C正确;极差为:14﹣5=9,故选项D错误.故选D二、填空题(本大题共6个小题,每小题3分,共18分)11、6【解析】试题分析:设所求正n边形边数为n,则120°n=(n﹣2)•180°,解得n=6;考点:多边形内角与外角.12、221.1.【解析】

先将这组数据从小到大排列,再找出最中间的数,即可得出中位数;找出这组数据中最多的数则是众数;先求出这组数据的平均数,再根据方差公式S2=[(x1-)2+(x2-)2+…+(xn-)2]进行计算即可.【详解】解:把这组数据从小到大排列为:2,2,2,4,5,最中间的数是2,则中位数是2;众数为2;∵这组数据的平均数是(2+2+2+4+5)÷5=3,∴方差是:[(2−3)2+(2−3)2+(2−3)2+(4−3)2+(5−3)2]=1.1.故答案为2,2,1.1.【点睛】本题考查了中位数、众数与方差的定义,解题的关键是熟练的掌握中位数、众数与方差的定义.13、(0,0)【解析】

根据坐标的平移规律解答即可.【详解】将点A(-3,2)向右平移3个单位长度,再向下平移2个单位长度,那么平移后对应的点A′的坐标是(-3+3,2-2),即(0,0),故答案为(0,0).【点睛】此题主要考查坐标与图形变化-平移.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.14、ab(2a+1)(2a-1)【解析】

先提取公因式再用公式法进行因式分解即可.【详解】4a3b-ab=ab(4a2-1)=ab(2a+1)(2a-1)【点睛】此题主要考查因式分解单项式,解题的关键是熟知因式分解的方法.15、-1.【解析】解:∵-3<-2,∴(-3)*(-2)=(-3)-(-2)=-1.故答案为-1.16、b(a﹣4)1【解析】

先提公因式,再用完全平方公式进行因式分解.【详解】解:a1b-8ab+16b=b(a1-8a+16)=b(a-4)1.【点睛】本题考查了提公因式与公式法的综合运用,熟练运用公式法分解因式是本题的关键.三、解答题(共8题,共72分)17、(1)PM=PN,PM⊥PN(2)等腰直角三角形,理由见解析(3)【解析】

(1)由等腰直角三角形的性质易证△ACE≌△BCD,由此可得AE=BD,再根据三角形中位线定理即可得到PM=PN,由平行线的性质可得PM⊥PN;(2)(1)中的结论仍旧成立,由(1)中的证明思路即可证明;(3)由(2)可知△PMN是等腰直角三角形,PM=BD,推出当BD的值最大时,PM的值最大,△PMN的面积最大,推出当B、C、D共线时,BD的最大值=BC+CD=6,由此即可解决问题;【详解】解:(1)PM=PN,PM⊥PN,理由如下:延长AE交BD于O,∵△ACB和△ECD是等腰直角三角形,∴AC=BC,EC=CD,∠ACB=∠ECD=90°.在△ACE和△BCD中,∴△ACE≌△BCD(SAS),∴AE=BD,∠EAC=∠CBD,∵∠EAC+∠AEC=90°,∠AEC=∠BEO,∴∠CBD+∠BEO=90°,∴∠BOE=90°,即AE⊥BD,∵点M、N分别是斜边AB、DE的中点,点P为AD的中点,∴PM=BD,PN=AE,∴PM=PM,∵PM∥BD,PN∥AE,AE⊥BD,∴∠NPD=∠EAC,∠MPA=∠BDC,∠EAC+∠BDC=90°,∴∠MPA+∠NPC=90°,∴∠MPN=90°,即PM⊥PN,故答案是:PM=PN,PM⊥PN;(2)如图②中,设AE交BC于O,∵△ACB和△ECD是等腰直角三角形,∴AC=BC,EC=CD,∠ACB=∠ECD=90°,∴∠ACB+∠BCE=∠ECD+∠BCE,∴∠ACE=∠BCD,∴△ACE≌△BCD,∴AE=BD,∠CAE=∠CBD,又∵∠AOC=∠BOE,∠CAE=∠CBD,∴∠BHO=∠ACO=90°,∵点P、M、N分别为AD、AB、DE的中点,∴PM=BD,PM∥BD,PN=AE,PN∥AE,∴PM=PN,∴∠MGE+∠BHA=180°,∴∠MGE=90°,∴∠MPN=90°,∴PM⊥PN;(3)由(2)可知△PMN是等腰直角三角形,PM=BD,∴当BD的值最大时,PM的值最大,△PMN的面积最大,∴当B、C、D共线时,BD的最大值=BC+CD=6,∴PM=PN=3,∴△PMN的面积的最大值=×3×3=.【点睛】本题考查的是几何变换综合题,熟知等腰直角三角形的判定与性质、全等三角形的判定与性质、三角形中位线定理的运用,解题的关键是正确寻找全等三角形解决问题,学会利用三角形的三边关系解决最值问题,属于中考压轴题.18、(1)50、1;(2)平均数为5.16次,众数为5次,中位数为5次;(3)估计该校350名九年级男生中有2人体能达标.【解析】分析:(Ⅰ)根据4次的人数及其百分比可得总人数,用6次的人数除以总人数求得m即可;(Ⅱ)根据平均数、众数、中位数的定义求解可得;(Ⅲ)总人数乘以样本中5、6、7次人数之和占被调查人数的比例可得.详解:(Ⅰ)本次抽测的男生人数为10÷20%=50,m%=×100%=1%,所以m=1.故答案为50、1;(Ⅱ)平均数为=5.16次,众数为5次,中位数为=5次;(Ⅲ)×350=2.答:估计该校350名九年级男生中有2人体能达标.点睛:本题考查了条形统计图,读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.19、(1)x=1,y=;(2)小华的打车总费用为18元.【解析】试题分析:(1)根据表格内容列出关于x、y的方程组,并解方程组.

(2)根据里程数和时间来计算总费用.试题解析:(1)由题意得,解得;(2)小华的里程数是11km,时间为14min.则总费用是:11x+14y=11+7=18(元).答:总费用是18元.20、(1)作图见解析;(2)1【解析】

(1)以点B为圆心,任意长为半径画弧分别与AB、BC相交。然后再分别以交点为圆心,以交点间的距离为半径分别画弧,两弧相交于一点,画出射线BE即得.(2)根据平行四边形的对边相等,可得AB+AD=5,由两直线平行内错角相等可得∠AEB=∠EBC,利用角平分线即得∠ABE=∠EBC,即证∠AEB=∠ABE.根据等角对等边可得AB=AE=2,从而求出ED的长.【详解】(1)解:如图所示:(2)解:∵平行四边形ABCD的周长为10∴AB+AD=5∵AD//BC∴∠AEB=∠EBC又∵BE平分∠ABC∴∠ABE=∠EBC∴∠AEB=∠ABE∴AB=AE=2∴ED=AD-AE=3-2=1【点睛】此题考查作图-基本作图和平行四边形的性质,解题关键在于掌握作图法则21、﹣4≤x<1【解析】

先求出各不等式的【详解】解不等式x﹣1<2,得:x<1,解不等式2x+1≥x﹣1,得:x≥﹣4,则不等式组的解集为﹣4≤x<1.【点睛】考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.22、(1);(2)点P的坐标为;(3).【解析】

(1)利用三角形相似可求AO•OB,再由一元二次方程根与系数关系求AO•OB构造方程求n;(2)求出B、C坐标,设出点Q坐标,利用平行四边形对角线互相平分性质,分类讨论点P坐标,分别代入抛物线解析式,求出Q点坐标;(3)设出点D坐标(a,b),利用相似表示OA,再由一元二次方程根与系数关系表示OB,得到点B坐标,进而找到b与a关系,代入抛物线求a、n即可.【详解】(1)若△ABC为直角三角形∴△AOC∽△COB∴OC2=AO•OB当y=0时,0=x2-x-n由一元二次方程根与系数关系-OA•OB=OC2n2==−2n解得n=0(舍去)或n=2∴抛物线解析式为y=;(2)由(1)当=0时解得x1=-1,x2=4∴OA=1,OB=4∴B(4,0),C(0,-2)∵抛物线对称轴为直线x=-=−∴设点Q坐标为(,b)由平行四边形性质可知当BQ、CP为平行四边形对角线时,点P坐标为(,b+2)代入y=x2-x-2解得b=,则P点坐标为(,)当CQ、PB为为平行四边形对角线时,点P坐标为(-,b-2)代入y=x2-x-2解得b=,则P坐标为(-,)综上点P坐标为(,),(-,);(3)设点D坐标为(a,b)∵AE:ED=1:4则OE=b,OA=a∵AD∥AB∴△AEO∽△BCO∵OC=n∴∴OB=由一元二次方程根与系数关系得,∴b=a2将点A(-a,0),D(a,a2)代入y=x2-x-n解得a=6或a=0(舍去)则n=.【点睛】本题是代数几何综合题,考查了二次函数图象性质、一元二次方程根与系数关系、三角形相似以及平行四边形的性质,解答关键是综合运用数形结合分类讨论思想.23、(1)①证明见解析;②证明见解析;(2)△EFC是等腰直角三角形.理由见解析;(3).【解析】试题分析:(1)①过点E作EG⊥BC,垂足为G,根据ASA证明△CEG≌△FEM得CE=FE,再根据SAS证明△ABE≌△CBE得AE=CE,在△AEF中根据等腰三角形“三线合一”即可证明结论成立;②设AM=x,则AF=2x,在Rt△DEN中,∠EDN=45°,DE=DN=x,DO=2DE=2x,BD=2DO=4x.在Rt△ABD中,∠ADB=45°,AB=BD·sin45°=4x,又AF=2x,从而AF=AB,得到点F是AB的中点.;(2)过点E作EM⊥AB,垂足为M,延长ME交CD于点N,过点E作EG⊥BC,垂足为G.则△AEM≌△CEG(HL),再证明△AME≌△FME(SAS),从而可得△EFC是等腰直角三角形.(3)方法同第(2)小题.过点E作EM⊥AB,垂足为M,延长ME交CD于点N,过点E作EG⊥BC,垂足为G.则△AEM≌△CEG(HL),再证明△AEM≌△FEM(ASA),得AM=FM,设AM=x,则AF=2x,DN=x,DE=x,BD=x,AB=x,=2x:x=.试题解析:(1)①过点E作EG⊥BC,垂足为G,则四边形MBGE为正方形,ME=GE,∠MFG=90°,即∠MEF+∠FEG=90°,又∠CEG+∠FEG=90°,∴∠CEG=∠FEM.又GE=ME,∠EGC=∠EMF=90°,∴△CEG≌△FEM.∴CE=FE,∵四边形ABCD为正方形,∴AB=CB,∠ABE=∠C

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论