




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
山西省2023届高考考前适应性测试数学(理科)本试卷分选择题和非选择题两部分,共4页,满分150分,考试用时120分钟。注意事项:1.答题前,考生务必用黑色字迹的钢笔或签字笔将自己的校名、姓名、考号、座位号等相关信息填写在答题卡指定区域内。2.选择题每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其它答案;不能答在试卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内的相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效。4.考生必须保持答题卡的整洁。一、选择题:本大题共12小题,每小题5分,共60分。在每个小题给出的四个选项中,只有一项是符合题目要求.1.已知单元素集合,则A.0B.-4C.-4或1D.-4或02.某天的值日工作由4名同学负责,且其中1人负责清理讲台,另1人负责扫地,其余2人负责拖地,则不同的分工共有A.6种B.12种C.18种D.24种3.已知函数,若,则的大小关系是A.B.C.D.4.在平行四边形中,点为的中点,与的交点为,设,则向量A.B.C.D.5.已知抛物线,过点的直线与相交于两点,为坐标原点,若,则的取值范围是A.B.C.D.6.《九章算术》中对一些特殊的几何体有特定的称谓,例如:将底面为直角三角形的直三棱柱称为堑堵.将一堑堵沿其一顶点与相对的棱刨开,得到一个阳马(底面是长方形,且有一条侧棱与底面垂直的四棱锥)和一个鳖臑(四个面均匀直角三角形的四面体).在如图所示的堑堵中,,,则阳马的外接球的表面积是A.B.C.D.7.若满足约束条件,则的取值范围是A.B.C.D.8.执行如图所示的程序框图,如果输入的是10,则与输出结果的值最接近的是A.B.C.D.9.在中,点为边上一点,若,,则的面积是A.B.C.D.10.某市1路公交车每日清晨6:30于始发站A站发出首班车,随后每隔10分钟发出下一班车.甲、乙二人某日早晨均需从A站搭乘该公交车上班,甲在6:35-6:55内随机到达A站候车,乙在6:50-7:05内随机到达A站候车,则他们能搭乘同一班公交车的概率是A.B.C.D.11.如图,中,,若其顶点在轴上运动,顶点在轴的非负半轴上运动.设顶点的横坐标非负,纵坐标为,且直线的倾斜角为,则函数的图象大致是12.定义在上的函数满足,且当时,,若对任意的,不等式恒成立,则实数的最大值是A.B.C.D.-1二、填空题:本大题共4小题,每小题5分,满分20分,将答案填在答题纸上。13.在复平面内,复数对应的点位于第三象限,则实数的取值范围是.14.已知,则.15.过双曲线的右焦点,且斜率为2的直线与的右支有两个不同的公共点,则双曲线离心率的取值范围是.16.一个正方体的三视图如图所示,若俯视图中正六边形的边长为1,则该正方体的体积是.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17-21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.17.(12分)已知等比数列中,.(1)求的通项公式;(2)设,求数列的前项和.18.(12分)某快递公司收取快递费用的标准是:重量不超过的包裹收费10元;重量超过的包裹,除收费10元之外,超过的部分,每超出(不足,按计算)需再收5元.该公司将最近承揽的100件包裹的重量统计如下:包裹重量(单位:)12345包裹件数43301584公司对近60天,每天揽件数量统计如下表:包裹件数范围0~100101~200201~300301~400401~500包裹件数(近似处理)50150250350450天数6630126以上数据已做近似处理,并将频率视为概率.(1)计算该公司未来3天内恰有2天揽件数在101~400之间的概率;(2)①估计该公司对每件包裹收取的快递费的平均值;②公司将快递费的三分之一作为前台工作人员的工资和公司利润,剩余的用作其他费用.目前前台有工作人员3人,每人每天揽件不超过150件,工资100元.公司正在考虑是否将前台工作人员裁减1人,试计算裁员前后公司每日利润的数学期望,并判断裁员是否对提高公司利润更有利?19.(12分)如图,在多面体中,四边形为菱形,,且平面平面.(1)求证:;(2)若,求二面角的余弦值.20.(12分)已知椭圆过点,且两个焦点的坐标分别为.(1)求的方程;(2)若为上的三个不同的点,为坐标原点,且,求证:四边形的面积为定值.21.(12分)已知函数.(1)当时,若函数恰有一个零点,求的取值范围;(2)当时,恒成立,求的取值范围.(二)选考题:共10分.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分,作答时请用2B铅笔在答题卡将所选题号的方框涂黑。22.[选修4-4:坐标系与参数方程](10分)在平面直角坐标系中,曲线的参数方程为:(为参数,),将曲线经过伸缩变换:得到曲线.(1)以原点为极点,轴的正半轴为极轴建立坐标系,求的极坐标方程;(2)若直线(为参数)与相交于两点,且,求的值.23.[选修4-5:不等式选讲](10分)已知函数.(1)若的最小值不小于3,求的最大值;(2)若的最小值为3,求的值.数学(理科)参考答案一、选择题1-5:DBDDA6-10:BCCCD11、12:AB二、填空题13.14.15.16.三、解答题17.解:(1)设等比数列的公比为,则,因为,所以,因为,解得,所以;(2),设,则,.18.解:(1)样本中包裹件数在之间的天数为48,频率,故可估计概率为,显然未来3天中,包裹件数在之间的天数服从二项分布,即,故所求概率为;(2)①样本中快递费用及包裹件数如下表:包裹重量(单位:)12345快递费(单位:元)1015202530包裹件数43301584故样本中每件快递收取的费用的平均值为(元),故该公司对每件快递收取的费用的平均值可估计为15元.②根据题意及(2)①,揽件数每增加1,可使前台工资和公司利润增加(元),将题目中的天数转化为频率,得包裹件数范围0~100101~200201~300301~400401~500包裹件数(近似处理)50150250350450天数6630126频率0.10.10.50.20.1若不裁员,则每天可揽件的上限为450件,公司每日揽件数情况如下:包裹件数(近似处理)50150250350450实际揽件数50150250350450频率0.10.10.50.20.1故公司平均每日利润的期望值为(元);若裁员1人,则每天可揽件的上限为300件,公司每日揽件数情况如下:包裹件数(近似处理)50150250350450实际揽件数50150250300300频率0.10.10.50.20.1故公司平均每日利润的期望值为(元)因,故公司将前台工作人员裁员1人对提高公司利润不利.19.(1)证明:连接,由四边形为菱形可知,∵平面平面,且交线为,∴平面,∴,又,∴,∵,∴平面,∵平面,∴;(2)解:设,过点作的平行线,由(1)可知两两互相垂直,则可建立如图所示的空间直角坐标系,设,则,所以,设平面的法向量为,则,即,取,则为平面的一个法向量,同理可得为平面的一个法向量.则,又二面角的平面角为钝角,则其余弦值为.20.解:(1)由已知得,∴,则的方程为;(2)当直线的斜率不为零时,可设代入得:,设,则,,设,由,得,∵点在椭圆上,∴,即,∴,,原点到直线的距离为.∴四边形的面积:.当的斜率为零时,四边形的面积,∴四边形的面积为定值.21.解:(1)函数的定义域为,当时,,所以,①当时,时无零点,②当时,,所以在上单调递增,取,则,因为,所以,此时函数恰有一个零点,③当时,令,解得,当时,,所以在上单调递减;当时,,所以在上单调递增.要使函数有一个零点,则即,综上所述,若函数恰有一个零点,则或;(2)令,根据题意,当时,恒成立,又,①若,则时,恒成立,所以在上是增函数,且,所以不符题意.②若,则时,恒成立,所以在上是增函数,且,所以不符题意.③若,则时,恒有,故在上是减函数,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025届山东郯城实验中学初三下第一次阶段考英语试题试卷含答案
- 明达职业技术学院《手机短视频拍摄与编辑》2023-2024学年第一学期期末试卷
- 2025届湖南省邵阳市邵东县第三中学高三下学期周练一(2.15)生物试题含解析
- 教育画卷展开
- 安全生产开展情况
- 中小学劳动教育在劳动中感悟美在劳动中长技能课件
- 思维导图集训6小时找到适合你的高效学习法第3讲 思维导图让你高效复习:知识结构化
- 数字孪生行业发展分析
- 惠普电脑培训
- 护理质控汇报
- 交通保安员职责与道路安全管理
- 2025年全民国家安全教育日主题教育课件
- 河南省高职单招《职测》备考试题集(含历年真题)
- DL∕T 2528-2022 电力储能基本术语
- JGJT10-2011 混凝土泵送技术规程
- 《立体裁剪》实训指导书
- 六西格玛绿带题库
- 岛津gc2014 gcsolution培训教材
- 年龄更改申请书
- 自动计算空调水管及冷量管径对应表-office2010以上版本
- 轴承钢的开发与生产培训教材
评论
0/150
提交评论