教学课件第四章均匀反应堆的临界理论_第1页
教学课件第四章均匀反应堆的临界理论_第2页
教学课件第四章均匀反应堆的临界理论_第3页
教学课件第四章均匀反应堆的临界理论_第4页
教学课件第四章均匀反应堆的临界理论_第5页
已阅读5页,还剩46页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第四章:均匀反应堆的临界理论专业:核工程与核技术反应堆工程核物理核安全工程南华大学《反应堆物理》精品课程教组于涛凌球廖义香左国平李小华核反应堆物理分析0概述研究内容由燃料和慢化剂组成的有限均匀增殖介质(反应堆系统)内的中子扩散问题。中子在介质内扩散过程的同时,还发生着链式反应过程。

①裂变过程②衰减或自持③自持条件临界理论①各种形状的反应堆达到临界状态的条件(临界条件);临界时系统的体积大小和燃料成分及其装载量。

②临界状态下系统内中子通量密度(或功率)的空间分布。分群扩散模型裂变中子热中子三群模型快群慢群热群双群模型快群热群单群模型热群§4.1均匀裸堆的单群理论多群扩散单群中子扩散方程:有燃料和慢化剂的堆芯中均匀的热中子裂变中子瞬发裂变中子=K∞×吸收中子反应堆芯部单群中子扩散方程求解?含时间与空间变量求解二阶偏微分方程?分离变量代入求解二阶偏微分方程?分离变量代入不同变量函数等式成立?左=右=常数(-B2)或波动方程对(2)式:波动方程,B2称为特征值(B12,B22,…),对应于Bn2的解,称特征函数。B12称基波特征值,其余称高阶谐波。

B12记为Bg2,称反应堆的几何曲率(geometricbuckling)。

几何曲率与反应堆的几何形状和大小有关。对应于每一个值和,有一个与之对应,非常重要求解举例:为了简化问题,讨论一个长、宽为无限大,厚度(包括外推距离在内)等于a的平板形裸堆(图4-1)。波动方程解为边界条件:与系统的尺寸有关随n单调增大周期函数§4.1.2热中子反应堆的临界条件

①特征值Bn2随n的增加而单调增大,最小特征值是n=1时的B12值。②当n增加时,kn单调递减,也就是说对应与最小特征值B12之k1是k1,…kn,中的最大值。③考虑到Bn2与系统尺寸有关,当系统尺寸加大时,Bn2便减小,因而改变系统的尺寸就可以改变Bn2值,从而也就改变了kn值。

B12<B22<……..<Bn2<……k1>k2>………>kn>……

热中子反应堆的临界条件:①无外中子源②有外中子源两个重要结果:(1)裸堆单群近似的“临界条件”为:单群理论临界方程这里B12系波动方程的最小特征值Bg2(几何曲率)。(2)当反应堆处于临界状态时,中子通量密度系按最小特征值Bg2所对应的基波特征函数分布,也就是说稳态反应堆的中子通量密度空间分布系满足波动方程:讨论单群理论临界方程:不泄漏几率:A:不泄漏几率B:反应堆的中子泄漏不仅与扩散长度有关,而且与几何曲率有关。从前面平板状反应堆的例子中可以看到,当反应堆体积增大时,Bg2就减小,因而正如所预料的那样,不泄漏几率也就增大。同样,扩散长度L愈大,意味着中子自产生到被吸收所穿行的距离也愈大,因而从反应堆中泄漏出去的几率也就增大,不泄漏几率PL就要减小例题:设有如图4-1所示一维石墨慢化反应堆。试求:(i)达到临界时反应堆的厚度H和中子通量密度的分布;(ii)设取H=2.5米,试求反应堆的有效增殖系数k。解(i)根据(4-17)式临界条件,求得临界时反应堆的几何曲率应等于因而。另一方面根据(4-12)式有,因而有(ii)若H=0.25米,则反应堆的几何曲率反应堆的不泄漏几率P和有效增殖系数分别等于§4.1.3各种几何形状的裸堆的几何曲率和中子通量密度分布重点:各种几何形状和大小的反应堆系统的几何曲率Bg2及其波动方程的基波解。(1)球形反应堆(外推半径R)波动方程:球坐标波动方程:普遍解:r=0,φ(r)有限E=0Rr=R,φ(r)=0中子通量密度分布函数:C为常数,它由中子通量密度的归一化条件或反应堆的输出功率决定。讨论:反应堆稳态运行中子通量密度分布?原点,r=0由反应堆功率水平决定设反应堆功率运行水平P,堆的体积为:R(2)长方体形反应堆长方体形反应堆,其边长分别为a,b,c(包括外推距离)。采用直角坐标系,原点取在反应堆的中心点。波动方程边界条件:(1)分离变量(2)(2)代入(1)除以φT(x,y,z),(1)三项分别是x,y,z的函数,且其和等于常数,每一项都为常数。(3)(4)(5)(3)求解:X轴对称,C=0几何曲率基波函数反应堆的几何曲率反应堆的中子通量分布函数长方形反应堆φ沿各轴向余弦分布可见:反应堆功率:P反应堆体积:(3)有限高圆柱形反应堆圆柱形为最常见的反应堆形状。设圆柱形反应堆的半径为R,高度为H(R,H均包括外推距离在内)波动方程1、φ各处有限;2、外推边界φ=0.分离变量轴向分布径向分布等于常数①②③③轴向功率余弦分布②通解零阶贝塞尔方程整理Cr等于0r=0,φ不有限有限高圆柱几何曲率有限高圆柱通量分布函数反应堆功率:P反应堆体积:比较分析三种反应堆通量密度分布函数比较三种堆的中子通量分布近似,但是斜率不同。平板最大,圆柱次之,球最小。中子泄漏与通量分布斜率成正比。2反应堆尺寸给定,曲率给定。曲率给定,尺寸不能确定。如何确定尺寸,使反应堆体积最小?Bg固定:Bg相同:§4.1.4反应堆曲率和临界计算任务中子通量密度的空间分布满足波动方程:①几何曲率只与反应堆的几何形状和尺寸大小有关;球形裸堆与反应堆的材料成分和性质没有关系。②事实上,由于

、等都仅仅决定于反应堆芯部材料特性,显然,对于一定材料成份(即给定、L等值)的反应堆,只能有一个确定的值能满足临界方程材料曲率③反应堆达到临界的条件是:

材料曲率=几何曲率A给定反应堆材料成分,确定它的临界尺寸B给定反应堆的形状和尺寸,确定临界时反应堆的材料成分C反应性(reactivity)表征链式核反应介质或系统偏离临界程度的一个参数。例题:§4.1.5单群理论的修正单群理论:热群。快群?单群修正方程§4.2有反射层反应堆的单群扩散理论作用:A减少芯部的泄漏,使芯部临界尺寸小,节省材料;B展平中子通量密度,使输出功率增加;C增大了逃脱共振吸收几率。

材料选择:①散射截面大;②吸收截面小;慢化能力好,共振吸收小。水、重水、铍、石墨反射层反射层芯部定义:

将从堆芯或倍增系统逃脱的中子部分地散射回堆芯或倍增系统的物质。§4.3双群扩散理论§4.3.1双群常数与双群方程1.分群2.双群群常数①群

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论