光纤通信技术-第一章-绪论_第1页
光纤通信技术-第一章-绪论_第2页
光纤通信技术-第一章-绪论_第3页
光纤通信技术-第一章-绪论_第4页
光纤通信技术-第一章-绪论_第5页
已阅读5页,还剩57页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1.1光纤通信概述1.2光纤通信系统主要特点1.3光纤通信系统的简介1.4光纤通信技术发展展望第1章绪论1.1光纤通信概述光纤通信的基本概念光纤通信是指利用相干性和方向性极好的激光作为载波(也称光载波)来携带信息,并利用光导纤维(光纤)来进行传输的通信方式。光纤通信使用的波段光纤通信常用的波长范围为近红外区,即从0.85-1.6,其频率范围约为hz数量级,其比常用的微波频率高

倍,所以其通信容量也较常用的微波通信原则上高

。光纤通信的故事烽火传信古希腊的火炬墙贝尔光电话系统大气光通信地下光通信光纤的雏形高锟和现代光纤通信原始形式的光通信:中国古代用“烽火台”报警,欧洲人用旗语传送信息。

烽火传信古希腊的火炬墙1880年,美国人贝尔(Bell)发明了用光波作载波传送话音的“光电话”他以日光为光源,大气为传输媒介,传输距离是200米。贝尔光电话是现代光通信的雏型。贝尔光电话系统激光器的发明和应用,光通信进入一个崭新的阶段,它具有亮度高、谱线窄、方向性好但由于大气通信受气象条件的影响,通信不稳定频率为100太赫兹的红宝石激光器[美国梅曼(Maiman),1960]大气光通信

大气光通信受阻,人们将研究的重点转入到地下光波通信的实验,先后出现过反射波导和透镜波导等地下通信的实验。但反射波导和透镜波导造价昂贵,调整、维护困难。地下光通信没有找到稳定可靠和低损耗的传输介质对光通信的研究走入了低潮在这个时期,美国麻省理工学院利用He-Ne激光器和CO2激光器进行了大气激光通信试验。由于没有找到稳定可靠和低损耗的传输介质,对光通信的研究曾一度走入了低潮1870年,英国物理学家丁达尔发现太阳光随着水流发生弯曲

n水

>n空气,光发生全反射光纤的雏形1953年,英国伦敦学院卡帕尼博士首次将丁达尔的观察用于实际,发明了用极细的玻璃制作的光导纤维:芯层+包层。芯层的折射率大于包层,光在其中做全反射。

1960年左右,最好的光纤损耗也在1000分贝/公里(dB/km)。由于,损耗很大,它最初被用于医疗,如内窥镜。

由于人们无法解决光向四面八方散射时,光强减弱和不能通过障碍物的问题,(也就是没有找到合适的载体和光源)因此,直到上世纪六十年代初,光通信都没有什么重大的进展。它仅仅作为一种信号灯使用,如:马路上的红绿灯、机场上的跑道标志灯和航标灯等等。

而此时电通信却迅速发展起来,人类进入了电通信时代。1966年,英籍华裔学者高锟(C.K.Kao)和霍克哈姆(C.A.Hockham)发表了关于传输介质新概念的论文,指出了利用光纤(OpticalFiber)进行信息传输的可能性和技术途径,奠定了现代光通信——光纤通信的基础。高昆与现代光纤通信高昆和他的同事在英国标准电信研究所对光在石英玻璃纤维中的严重损耗问题进行了深入研究,指出光纤产生损耗的原因:1)玻璃纤维中含有过量的铬、铜、铁与锰等金属离子和其他杂质;2)拉制光纤工艺造成芯、包层分界面不均匀及其所引起的折射率不均匀新的发现:一些玻璃纤维在红外光区的损耗较小,指明通过“原材料的提纯制造出适合于长距离通信使用的低损耗光纤”这一发展方向。光纤发明人高锟CharlesK.Kao论文:《光频介质纤维表面波导》1966(Dielectric-FiberSufaceWaveguideforOpticalFrequency)提出:制造石英光纤可实现光纤通信指出三点:光纤的容量很大高纯石英光纤的损失可低达20dB/km

单模光纤的原理构造高锟——光纤之父光纤通信发明家高锟(左)

1998年在英国接受IEE授予的奖章2009年诺贝尔物理学奖获得者英国华裔科学家高锟,美国科学家威拉德·博伊尔和乔治·史密斯。瑞典皇家科学院说,高锟在“有关光在纤维中的传输以用于光学通信方面”取得了突破性成就,他将获得今年物理学奖一半的奖金,共500万瑞典克朗(约合70万美元);博伊尔和史密斯发明了半导体成像器件——电荷耦合器件(CCD)图像传感器,将分享今年物理学奖另一半奖金光在光纤中的传播芯包层树脂被覆层光纤的形状全波光纤光纤研制的重大突破

•1970年,美国康宁(Corning)公司研制成功损耗20dB/km的石英光纤。把光纤通信的研究开发推向一个新阶段。

•1972年,康宁公司高纯石英多模光纤损耗降低到4dB/km。

•1973年,美国贝尔(Bell)实验室的光纤损耗降低到2.5dB/km。1974年降低到1.1dB/km。

•1976年,日本电报电话(NTT)公司将光纤损耗降低到0.47dB/km(波长1.2μm)。

•在以后的10年中,波长为1.55μm的光纤损耗:

1979年是0.20dB/km,1984年是0.157dB/km,1986年是0.154dB/km,接近了光纤最低损耗的理论极限。1970年康宁研制出低损失光纤Corning的3位科学家Dr.DonalKeck,Dr.BobMaurer,Dr.PeterSchultz于1970年研制出低损失光纤.

光纤长度(米)29, 28.1损失(dB/km)17,18.2

芯直径(微米) 3.7(单模)(Dr.Keck的实验室记录)光纤通信用光源的实质性进展

•1970年,美国贝尔实验室、日本电气公司(NEC)和前苏联先后,研制成功室温下连续振荡的镓铝砷(GaAlAs)双异质结半导体激光器(短波长)。虽然寿命只有几个小时,但它为半导体激光器的发展奠定了基础。

•1973年,半导体激光器寿命达到7000小时。

•1976年,日本电报电话公司研制成功发射波长为1.3μm的铟镓砷磷(InGaAsP)激光器。

•1977年,贝尔实验室研制的半导体激光器寿命达到10万小时。

•1979年美国电报电话(AT&T)公司和日本电报电话公司研制成功发射波长为1.55μm的连续振荡半导体激光器。

由于光纤和半导体激光器的技术进步,使1970年成为光纤通信发展的一个重要里程碑实用光纤通信系统的发展

•1976年,美国在亚特兰大(Atlanta)进行了世界上第一个实用光纤通信系统的现场试验。

•1980年,美国标准化FT-3光纤通信系统投入商业应用。

•1976年和1978年,日本先后进行了速率为34Mb/s的突变型多模光纤通信系统,以及速率为100Mb/s的渐变型多模光纤通信系统的试验。

•1983年敷设了纵贯日本南北的光缆长途干线。

随后,由美、日、英、法发起的第一条横跨大西洋TAT-8海底光缆通信系统于1988年建成。

•第一条横跨太平洋TPC-3/HAW-4海底光缆通信系统于1989年建成。从此,海底光缆通信系统的建设得到了全面展开,促进了全球通信网的发展。光纤通信的发展历程自光纤问世以来,光纤通信的发展主要经历了四个发展时期:

第一个时期是1970年代的初期发展阶段,主要解决了光纤的低损耗,光源和光接收器等光器件,小容量的光纤通信系统的商用化。到1976年,日本电话电报公司使光纤损耗下降到0.5dB/km。1979年,日本电报电话公司研制出损耗0.2dB/km的光纤。目前,通信光纤最低损耗0.17dB/km。第二个时期是1980年代的准同步数字系列(PDH)设备的突破和商用化。这个时期光纤开始代替电缆,数字传输制取代模拟传输制,由于PDH系统是点对点系统,没有国际统一的光接口规范、上下电路不方便、成本高、帧结构中没有足够的管理比特,无法进行网络的运行、管理与维护等缺点,中期出现了同步数字系列(SDH)。第三个时期是1990年代的通信标准的建立和同步数字系列(SDH)设备的研制成功及其大量商用化。 1984年初,美国贝尔通信研究所首先开始了同步信号光传输体系的研究.

1986年国际电报电话咨询委员会(CCITT)开始审议SONET标准,随后建议增加2Mbit/s和34Mbit/s支60在设备功能、光接口、组网方式和网络管理等方面逐步地予以规范,到目前为止已形成了一个完整的全球统一的光纤数字通信标准。第四个时期是21世纪以来,波分复用(WDM)通信系统设备的突破和大量商用化。

-光波分复用是多个信源的电信号调制各自的光载波,经复用后在一根光纤上传输,使一根光纤起到多根光纤的作用,通信容量成数十倍、百倍地提高。

-随着网络业务向动态的IP业务的继续汇聚,一个灵活、动态的光网络是不可或缺的,最新发展趋势是自动交换光网络(ASON),使光联网从静态光联网走向动态交换光网络。1.2光纤通信的优势和特点

在光纤通信系统中,光波作为载波,光纤作为传送媒介。由于光波频率比电波频率高得多,光纤又比同轴电缆损耗低得多,因此相对于用电磁波作为载波的电通信系统,光纤通信具有许多独特的优点。1.频带宽、传输容量大2.损耗小、中继距离长电通信中继站多:传输线路的成本高、维护不方便、运行不可靠。石英光纤在1.55µm波长区的损耗可低到0.18dB/km,比已知的其他通信线路的损耗都低得多。3.重量轻、体积小4.抗电磁干扰性能好光纤由电绝缘的石英材料制成,光纤通信线路不受各种电磁场的干扰和闪电雷击的损坏。所以无金属加强筋光缆非常适合于存在强电磁场干扰的高压电力线路周围、油田、煤矿和化工等易燃易爆环境中使用。

5.泄漏小、保密性好在光纤中传输的光泄漏非常微弱,即使在弯曲地段也无法窃听。没有专用的特殊工具,光纤不能分接,因此信息在光纤中传输非常安全,对军事、政治和经济都有重要的意义。6.节约金属材料,有利于资源合理使用制造同轴电缆和波导管的金属材料,在地球上的储量是有限的;而制造光纤的石英(SiO2)在地球上是取之不尽的缺点

光纤通信有许多优点,因而发展很快,但光纤通信也有以下缺点。1.容易折断(比如经常被挖断)2.光纤连接困难(断面是否垂直、焊接点是否有气泡等)3.光纤通信过程中怕水、怕冰(OH-根吸收增大损耗)4.光纤怕弯曲(导致损耗增加)案例:新疆某地区大雪导致光纤故障(2006年10月报道)原因:光缆没有防护好被冰雪包裹,并由于冰雪压力和热胀冷缩导致光纤弯曲1.3光纤通信系统的简介目前实用的光纤通信系统,较多采用的是数字编码、强度调制-直接检测的通信系统(IM-DD系统),这种系统的框图如图所示。图1.2光纤通信系统的构成光发送机的作用是把输入的电信号转换成光信号,并将光信号最大限度地注入光纤线路。光发送机由光源、驱动器和调制器组成。光发送机的核心是光源,对光源的要求是输出功率足够大,调制速率高,光谱线宽度和光束发散角小,输出光功率和光波长要稳定,器件寿命长。目前,最广泛使用的光源有半导体激光器(或称激光二极管,LD)和半导体发光二极管(LED)。光发送机光纤线路是光信号的传输媒质,可把来自发送机的光信号以尽可能小的衰减和脉冲展宽传送到接收机。对光纤的要求是其基本传输参数衰减和色散要尽可能小,并要有一定的机械特性和环境特性。工程中使用的是由许多根光纤绞合在一起组成的光缆。整个光纤线路由光纤、光纤接头和光纤连接器等组成。目前使用的光纤均为石英光纤。石英光纤的损耗-波长特性中有三个低损耗的波长区,即波长分别为850nm、1310nm、1550nm的三个低损耗区。光纤线路光接收机的功能是把由发送机发送的、经光纤线路传输后输出的已产生畸变和衰减的微弱光信号转换为电信号,并经放大、再生恢复为原来的电信号。光接收机由光检测器、放大器和相关电路组成。对光检测器的要求是响应度高、噪声低、响应速度快。目前广泛使用的光检测器有光电二极管(PIN)和雪崩光电二极管(APD)。光接收机按系统传输的信号分按照光纤通信系统中所传信号的形式可将光纤通信系统分为模拟光纤通信系统和数字光纤通信系统两类。按光纤通信系统所用光纤分光纤通信系统的主要传输介质为光纤,而目前在市场上主要有单模光纤和多模光纤两种,所以按所用光纤可将光纤通信系统分为单模光纤系统和多模光纤系统两类。按光源的调制方式分通常光纤通信系统将待传送的电信号调制到光源器件(激光器或发光管)上变为光信号在光纤中传送,按照信号对光源的调制方式,我们换可以将光纤通信系统分为直接调制光通信系统和间接调制光通信系统。1.4光纤通信系统的分类按拓扑结构分光纤通信系统用来连接一些节点,这些节点通常可能是交换机、终端、计算机、工作站等。光纤通信系统可分为三类:点对点系统、一点对多点系统以及网络。

图1.3光纤通信系统拓扑结构按网络服务范围分传统上,以网络的服务范围把网络分为三类:(1)局域网,服务范围2km,如以太网,信令环和信令总线;(2)城域网,服务范围100km,如电话本地交换网或者有线电视)分配系统;(3)广域网络,服务范围可达数千公里,如开放系统互连国际网络等。

1.5光纤通信系统的应用光纤可以传输数字信号,也可以传输模拟信号。光纤在通信网、广播电视网与计算机网,以及在其它数据传输系统中,都得到了广泛应用。通信网构成因特网的计算机局域网和广域网有线电视网的干线和分配网;工业电视系统综合业务光纤接入网通信网公用电信网:核心网、城域网光纤接入网海底光缆及洲际通信网无线通信网光纤通信的典型应用PassiveOpticalNetwork无源光网络OLTONUOpticalLineTerminal光线路终端OpticalNetworkUnit光网络单元PassiveOpticalSplitter

无源分光器PSTNInternetCATVONUONUPON是一种点到多点(P2MP)结构的无源光网络;

PON由光线路终端OLT(OpticalLineTerminal)、光网络单元ONU(OpticalNetworkUnit)和无源分光器POS(PassiveOpticalSplitter)组成;PassiveOpticalSplitter

无源分光器三网融合

ATMInternet骨干网DDN/FRPSTN/ISDNTV业务分配节点(COT)业务接入节点(RT)网管SNMP与电信网管中心相连Q3100/1000ME1/BRA/PRA155M622MSDH宽带综合业务光纤接入系统电力、煤炭系统的监视、控制和管理电力系统:光纤可以放在输电线、地线的中心,不受干扰。尤其在观测雷击的时候能起到电设备不可替代的作用。煤炭系统:电监控系统信号均为电信号,在含瓦斯高的矿井中容易引起爆炸。因此,如果考虑安全因素,电信号功率不能太大,这又导致传输距离受限。而如果采用光纤系统,很多设备可以无源化,即保证了安全,又能实现远距离监控。能源系统其他工业应用铁路、地铁和高速公路通信及监控网络系统交通系统光纤通信的典型应用例如在铁路通信网特点:1.

节点多,分支、插入话路频繁2.

通信量大小不一,需求不同(传输电话、数据、图像)3.

要求有强抗电磁干扰能力除了光纤通信,没有哪一种通信方式能满足这些要求

光纤制导武器:光纤制导导弹、光纤制导鱼雷需要获得实时的目标图像同时要求控制线轻巧水下通信系统是扫雷舰与浮游载体之间的数据传输线路。

军事光纤通信的典型应用

利用传像束的内窥镜激光手术刀医疗器械激光手术中,有时需要手术的部位在人体腔道内,这就要求激光能拐弯。目前大多数医疗激光可以通过石英光纤来实现拐弯,因此激光手术刀又叫光纤手术刀。光纤通信的典型应用机载电子光纤通信的典型应用1.光纤通信在我国的发展现状我国的光纤通信技术在发展的过程中经历很多的波折和困难,但是随着科学的不断进步和发展,我国的光纤通信已经掌握了光纤、系统以及器件等等各个方面的重要技术。光纤通信技术的应用和创新在国际上也是比较先进的国家。到目前为止,我国的光纤通信的应用范围也越来越广,不仅涉及到海底通信、长途干线以及局域网等等,而且在国际上应用也是非常广泛的。1.6光纤通信技术发展现状及展望单模和多模光纤

随着我国通信技术和通信设备的不断发展,对长距离的网络信号的传输运用的需求量越来越多,当前我国所采用的光纤通信主要是单模和多模光纤,多模光纤的价格比较低,传输的距离相对较短,主要应用于中短距离的传输信号的场合,单模光纤主要应用于长距离的传输,并且适合在多个不同的地域应用。光纤接入技术的应用

光纤接入技术的应用不仅可以实现信息的传输的高速化,而且满足人们的需求。光纤接入技术是高速信息接入用户中的关键措施,在光纤接入技术中,由于光纤到达的地理位置不同有不同的应用,比如FTTC、FTTH、FTTB等就是根据用户的程度进行定义的。其中FTTH是光纤接入技术中最后一种方式,他可以给用户提供全光的接入技术。所以可以充分利用宽带的特性,给用户提供不受任何限制的宽带。这种技术的应用主要是从2003年投入使用的,目前已经在全国的30多个城市内建立实验网。光波复用技术的应用

光纤通信的复用技术的应用已经从电时分系统(ETDM)的应用发展到光时分复用(OTDM)系统、光波分复用系统(WDM),光码分复用系统(OCDM)以及光频分复用系统(OFDM)等等方向发展应用。

光纤通信技术的发展已历经40余年,其技术和应用已经得到飞速的发展,可以这样说在现今的信息应用领域,光纤通信技术的应用无处不在。但是随着科学技术的不断发展和社会的不断进步,光纤通信技术依然有很大的发展前景和发展空间。下面我们就光纤技术、光器件技术、光纤传输技术、光网络技术及相关光纤通信新技术等对光纤通信技术的发展趋势作一展望。2.光纤通信技术未来发展趋势光纤技术的发展

当前光纤通信技术主要采用石英作为原材料进行制造的光纤,但是石英光纤的发展以及达到0.2db/Km,已经接近理论的数值,石英光纤不可能再达到0.1db/Km以下,所以,人们正在进行探索采用重金属氧化物、氟化物以及卤化物玻璃纤维不仅可以达到0.7db/Km,而且可以将之减少到0.02db/Km,这些光纤原材料可以将光纤技术向超长波进行转换。从而可以使一次传输距离不仅达到上万米,而且可以达到更长的传输距离。另外人们也在研究其他一些特殊用途光纤。光器件技术

光通信的核心技术在于光器件和光电器件技术,许多系统技术的实现是建立在器件技术进步的基础上的。光器件和光电器件技术

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论