版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2021-2022高考数学模拟试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知正项等比数列的前项和为,则的最小值为()A. B. C. D.2.若双曲线的离心率为,则双曲线的焦距为()A. B. C.6 D.83.已知、分别为双曲线:(,)的左、右焦点,过的直线交于、两点,为坐标原点,若,,则的离心率为()A.2 B. C. D.4.定义运算,则函数的图象是().A. B.C. D.5.已知函数,,若对,且,使得,则实数的取值范围是()A. B. C. D.6.已知,则下列不等式正确的是()A. B.C. D.7.设函数满足,则的图像可能是A. B.C. D.8.设曲线在点处的切线方程为,则()A.1 B.2 C.3 D.49.下列四个结论中正确的个数是(1)对于命题使得,则都有;(2)已知,则(3)已知回归直线的斜率的估计值是2,样本点的中心为(4,5),则回归直线方程为;(4)“”是“”的充分不必要条件.A.1 B.2 C.3 D.410.在正项等比数列{an}中,a5-a1=15,a4-a2=6,则a3=()A.2 B.4 C. D.811.《九章算术》中记载,堑堵是底面为直角三角形的直三棱柱,阳马指底面为矩形,一侧棱垂直于底面的四棱锥.如图,在堑堵中,,,当阳马体积的最大值为时,堑堵的外接球的体积为()A. B. C. D.12.已知某口袋中有3个白球和个黑球(),现从中随机取出一球,再换回一个不同颜色的球(即若取出的是白球,则放回一个黑球;若取出的是黑球,则放回一个白球),记换好球后袋中白球的个数是.若,则=()A. B.1 C. D.2二、填空题:本题共4小题,每小题5分,共20分。13.我国古代数学著作《九章算术》中记载“今有人共买物,人出八,盈三;人出七,不足四.问人数、物价各几何?”设人数、物价分别为、,满足,则_____,_____.14.(5分)已知为实数,向量,,且,则____________.15.记数列的前项和为,已知,且.若,则实数的取值范围为________.16.已知,,且,若恒成立,则实数的取值范围是____.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)曲线的参数方程为(为参数),以原点为极点,轴的正半轴为极轴的极坐标系中,曲线的极坐标方程为.(1)求曲线的极坐标方程和曲线的直角坐标方程;(2)若直线与曲线,的交点分别为、(、异于原点),当斜率时,求的最小值.18.(12分)在直角坐标系中,直线的参数方程为,(为参数).以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.(1)求直线的普通方程和曲线的直角坐标方程;(2)若点是直线的一点,过点作曲线的切线,切点为,求的最小值.19.(12分)已知a>0,b>0,a+b=2.(Ⅰ)求的最小值;(Ⅱ)证明:20.(12分)如图,在直三棱柱中,,,为的中点,点在线段上,且平面.(1)求证:;(2)求平面与平面所成二面角的正弦值.21.(12分)如图,在正四棱柱中,,,过顶点,的平面与棱,分别交于,两点(不在棱的端点处).(1)求证:四边形是平行四边形;(2)求证:与不垂直;(3)若平面与棱所在直线交于点,当四边形为菱形时,求长.22.(10分)如图所示,在四棱锥中,∥,,点分别为的中点.(1)证明:∥面;(2)若,且,面面,求二面角的余弦值.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.D【解析】
由,可求出等比数列的通项公式,进而可知当时,;当时,,从而可知的最小值为,求解即可.【详解】设等比数列的公比为,则,由题意得,,得,解得,得.当时,;当时,,则的最小值为.故选:D.【点睛】本题考查等比数列的通项公式的求法,考查等比数列的性质,考查学生的计算求解能力,属于中档题.2.A【解析】
依题意可得,再根据离心率求出,即可求出,从而得解;【详解】解:∵双曲线的离心率为,所以,∴,∴,双曲线的焦距为.故选:A【点睛】本题考查双曲线的简单几何性质,属于基础题.3.D【解析】
作出图象,取AB中点E,连接EF2,设F1A=x,根据双曲线定义可得x=2a,再由勾股定理可得到c2=7a2,进而得到e的值【详解】解:取AB中点E,连接EF2,则由已知可得BF1⊥EF2,F1A=AE=EB,设F1A=x,则由双曲线定义可得AF2=2a+x,BF1﹣BF2=3x﹣2a﹣x=2a,所以x=2a,则EF2=2a,由勾股定理可得(4a)2+(2a)2=(2c)2,所以c2=7a2,则e故选:D.【点睛】本题考查双曲线定义的应用,考查离心率的求法,数形结合思想,属于中档题.对于圆锥曲线中求离心率的问题,关键是列出含有中两个量的方程,有时还要结合椭圆、双曲线的定义对方程进行整理,从而求出离心率.4.A【解析】
由已知新运算的意义就是取得中的最小值,因此函数,只有选项中的图象符合要求,故选A.5.D【解析】
先求出的值域,再利用导数讨论函数在区间上的单调性,结合函数值域,由方程有两个根求参数范围即可.【详解】因为,故,当时,,故在区间上单调递减;当时,,故在区间上单调递增;当时,令,解得,故在区间单调递减,在区间上单调递增.又,且当趋近于零时,趋近于正无穷;对函数,当时,;根据题意,对,且,使得成立,只需,即可得,解得.故选:D.【点睛】本题考查利用导数研究由方程根的个数求参数范围的问题,涉及利用导数研究函数单调性以及函数值域的问题,属综合困难题.6.D【解析】
利用特殊值代入法,作差法,排除不符合条件的选项,得到符合条件的选项.【详解】已知,赋值法讨论的情况:(1)当时,令,,则,,排除B、C选项;(2)当时,令,,则,排除A选项.故选:D.【点睛】比较大小通常采用作差法,本题主要考查不等式与不等关系,不等式的基本性质,利用特殊值代入法,排除不符合条件的选项,得到符合条件的选项,是一种简单有效的方法,属于中等题.7.B【解析】根据题意,确定函数的性质,再判断哪一个图像具有这些性质.由得是偶函数,所以函数的图象关于轴对称,可知B,D符合;由得是周期为2的周期函数,选项D的图像的最小正周期是4,不符合,选项B的图像的最小正周期是2,符合,故选B.8.D【解析】
利用导数的几何意义得直线的斜率,列出a的方程即可求解【详解】因为,且在点处的切线的斜率为3,所以,即.故选:D【点睛】本题考查导数的几何意义,考查运算求解能力,是基础题9.C【解析】
由题意,(1)中,根据全称命题与存在性命题的关系,即可判定是正确的;(2)中,根据正态分布曲线的性质,即可判定是正确的;(3)中,由回归直线方程的性质和直线的点斜式方程,即可判定是正确;(4)中,基本不等式和充要条件的判定方法,即可判定.【详解】由题意,(1)中,根据全称命题与存在性命题的关系,可知命题使得,则都有,是错误的;(2)中,已知,正态分布曲线的性质,可知其对称轴的方程为,所以是正确的;(3)中,回归直线的斜率的估计值是2,样本点的中心为(4,5),由回归直线方程的性质和直线的点斜式方程,可得回归直线方程为是正确;(4)中,当时,可得成立,当时,只需满足,所以“”是“”成立的充分不必要条件.【点睛】本题主要考查了命题的真假判定及应用,其中解答中熟记含有量词的否定、正态分布曲线的性质、回归直线方程的性质,以及基本不等式的应用等知识点的应用,逐项判定是解答的关键,着重考查了分析问题和解答问题的能力,属于基础题.10.B【解析】
根据题意得到,,解得答案.【详解】,,解得或(舍去).故.故选:.【点睛】本题考查了等比数列的计算,意在考查学生的计算能力.11.B【解析】
利用均值不等式可得,即可求得,进而求得外接球的半径,即可求解.【详解】由题意易得平面,所以,当且仅当时等号成立,又阳马体积的最大值为,所以,所以堑堵的外接球的半径,所以外接球的体积,故选:B【点睛】本题以中国传统文化为背景,考查四棱锥的体积、直三棱柱的外接球的体积、基本不等式的应用,体现了数学运算、直观想象等核心素养.12.B【解析】由题意或4,则,故选B.二、填空题:本题共4小题,每小题5分,共20分。13.【解析】
利用已知条件,通过求解方程组即可得到结果.【详解】设人数、物价分别为、,满足,解得,.故答案为:;.【点睛】本题考查函数与方程的应用,方程组的求解,考查计算能力,属于基础题.14.5【解析】
由,,且,得,解得,则,则.15.【解析】
根据递推公式,以及之间的关系,即可容易求得,再根据数列的单调性,求得其最大值,则参数的范围可求.【详解】当时,,解得.所以.因为,则,两式相减,可得,即,则.两式相减,可得.所以数列是首项为3,公差为2的等差数列,所以,则.令,则.当时,,数列单调递减,而,,,故,即实数的取值范围为.故答案为:.【点睛】本题考查由递推公式求数列的通项公式,涉及数列单调性的判断,属综合困难题.16.(-4,2)【解析】试题分析:因为当且仅当时取等号,所以考点:基本不等式求最值三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(1)的极坐标方程为;曲线的直角坐标方程.(2)【解析】
(1)消去参数,可得曲线的直角坐标方程,再利用极坐标与直角坐标的互化,即可求解.(2)解法1:设直线的倾斜角为,把直线的参数方程代入曲线的普通坐标方程,求得,再把直线的参数方程代入曲线的普通坐标方程,得,得出,利用基本不等式,即可求解;解法2:设直线的极坐标方程为,分别代入曲线,的极坐标方程,得,,得出,即可基本不等式,即可求解.【详解】(1)由题曲线的参数方程为(为参数),消去参数,可得曲线的直角坐标方程为,即,则曲线的极坐标方程为,即,又因为曲线的极坐标方程为,即,根据,代入即可求解曲线的直角坐标方程.(2)解法1:设直线的倾斜角为,则直线的参数方程为(为参数,),把直线的参数方程代入曲线的普通坐标方程得:,解得,,,把直线的参数方程代入曲线的普通坐标方程得:,解得,,,,,即,,,,当且仅当,即时取等号,故的最小值为.解法2:设直线的极坐标方程为),代入曲线的极坐标方程,得,,把直线的参数方程代入曲线的极坐标方程得:,,即,,曲线的参,即,,,,当且仅当,即时取等号,故的最小值为.【点睛】本题主要考查了参数方程与普通方程,以及极坐标方程与直角坐标方程点互化,以及直线参数方程的应用和极坐标方程的应用,其中解答中熟记互化公式,合理应用直线的参数方程中参数的几何意义是解答的关键,着重考查了推理与运算能力,属于基础题.18.(1),;(2)见解析【解析】
(1)消去t,得直线的普通方程,利用极坐标与普通方程互化公式得曲线的直角坐标方程;(2)判断与圆相离,连接,在中,,即可求解【详解】(1)将的参数方程(为参数)消去参数,得.因为,,所以曲线的直角坐标方程为.(2)由(1)知曲线是以为圆心,3为半径的圆,设圆心为,则圆心到直线的距离,所以与圆相离,且.连接,在中,,所以,,即的最小值为.【点睛】本题考查参数方程化普通方程,极坐标与普通方程互化,直线与圆的位置关系,是中档题19.(Ⅰ)最小值为;(Ⅱ)见解析【解析】
(1)根据题意构造平均值不等式,结合均值不等式可得结果;(2)利用分析法证明,结合常用不等式和均值不等式即可证明.【详解】(Ⅰ)则当且仅当,即,时,所以的最小值为.(Ⅱ)要证明:,只需证:,即证明:,由,也即证明:.因为,所以当且仅当时,有,即,当时等号成立.所以【点睛】本题考查均值不等式,分析法证明不等式,审清题意,仔细计算,属中档题.20.见解析【解析】
(1)如图,连接,交于点,连接,,则为的中点,因为为的中点,所以,又,所以,从而,,,四点共面.因为平面,平面,平面平面,所以.又,所以四边形为平行四边形,所以,所以(2)因为,为的中点,所以,又三棱柱是直三棱柱,,所以,,互相垂直,分别以,,的方向为轴、轴、轴的正方向,建立如图所示的空间直角坐标系,因为,,所以,,,,所以,,.设平面的法向量为,则,即,令,可得,,所以平面的一个法向量为.设平面的法向量为,则,即,令,可得,,所以平面的一个法向量为,所以,所以平面与平面所成二面角的正弦值为.21.(1)证明见解析;(2)证明见解析;(3).【解析】
(1)由平面与平面没有交点,可得与不相交,又与共面,所以,同理可证,得证;(2)由四边形是平行四边形,且,则不可能是矩形,所以
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《脑出血护理》课件
- 2024年收购互联网公司股权及共同运营合作协议3篇
- 2025年泸州道路运输货运考试题库
- 2025年内蒙古货运从业资格考试模拟考试题目
- 《装修流程图课件》课件
- 2025年辽阳道路货物运输从业资格证考试
- 2024年度国际贸易货物包装与标识合同范本6篇
- 《儿少与教育》课件
- 2024年旅游业务合作经营合同
- 四川省达州市第一中学2023-2024学年八年级上学期第一次月考地理试题
- 广西民族大学校徽校标
- 车辆驾驶员管理台帐
- 教师晋升副高述职报告范文
- DBJ50T-123-2020 建筑护栏技术标准
- 2021知到答案【音乐的美及其鉴赏】智慧树网课章节测试答案
- 小学足球课时教案:足球队训练计划
- 流感疫苗PPT课件
- 招投标法律责任知识讲解(PPT讲稿)
- 硅酸盐水泥熟料矿物组成及其配料计教案
- 契税补贴申请表
- 螺旋千斤顶课程设计说明书
评论
0/150
提交评论