版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2021-2022中考数学模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.若是关于x的方程的一个根,则方程的另一个根是()A.9 B.4 C.4 D.32.有四包真空包装的火腿肠,每包以标准质量450g为基准,超过的克数记作正数,不足的克数记作负数.下面的数据是记录结果,其中与标准质量最接近的是()A.+2 B.﹣3 C.+4 D.﹣13.九年级(2)班同学根据兴趣分成五个小组,各小组人数分布如图所示,则在扇形图中第一小组对应的圆心角度数是()A. B. C. D.4.如图,Rt△ABC中,∠C=90°,AC=4,BC=4,两等圆⊙A,⊙B外切,那么图中两个扇形(即阴影部分)的面积之和为()A.2π B.4π C.6π D.8π5.上周周末放学,小华的妈妈来学校门口接他回家,小华离开教室后不远便发现把文具盒遗忘在了教室里,于是以相同的速度折返回去拿,到了教室后碰到班主任,并与班主任交流了一下周末计划才离开,为了不让妈妈久等,小华快步跑到学校门口,则小华离学校门口的距离y与时间t之间的函数关系的大致图象是()A. B. C. D.6.在3,0,-2,-2四个数中,最小的数是()A.3 B.0 C.-2 D.-27.如图,平面直角坐标系xOy中,矩形OABC的边OA、OC分别落在x、y轴上,点B坐标为(6,4),反比例函数的图象与AB边交于点D,与BC边交于点E,连结DE,将△BDE沿DE翻折至△B'DE处,点B'恰好落在正比例函数y=kx图象上,则k的值是()A. B. C. D.8.如图是抛物线y1=ax2+bx+c(a≠0)图象的一部分,抛物线的顶点坐标A(1,3),与x轴的一个交点B(4,0),直线y2=mx+n(m≠0)与抛物线交于A,B两点,下列结论:①2a+b=0;②abc>0;③方程ax2+bx+c=3有两个相等的实数根;④抛物线与x轴的另一个交点是(﹣1,0);⑤当1<x<4时,有y2<y1,其中正确的是()A.①②③ B.①③④ C.①③⑤ D.②④⑤9.在2014年5月崇左市教育局举行的“经典诗朗诵”演讲比赛中,有11名学生参加决赛,他们决赛的成绩各不相同,其中的一名学生想知道自己能否进入前6名,不仅要了解自己的成绩,还要了解这11名学生成绩的()A.众数 B.中位数 C.平均数 D.方差10.如图,数轴上的四个点A,B,C,D对应的数为整数,且AB=BC=CD=1,若|a|+|b|=2,则原点的位置可能是()A.A或B B.B或C C.C或D D.D或A11.如图,直线a∥b,∠ABC的顶点B在直线a上,两边分别交b于A,C两点,若∠ABC=90°,∠1=40°,则∠2的度数为()A.30° B.40° C.50° D.60°12.下列计算正确的是()A.+= B.﹣= C.×=6 D.=4二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,在△ABC中,AB=2,BC=3.5,∠B=60°,将△ABC绕点A按顺时针旋转一定角度得到△ADE,当点B的对应点D恰好落在BC边上时,则CD的长为_____.14.设[x)表示大于x的最小整数,如[3)=4,[−1.2)=−1,则下列结论中正确的是______.(填写所有正确结论的序号)①[0)=0;②[x)−x的最小值是0;③[x)−x的最大值是0;④存在实数x,使[x)−x=0.5成立.15.出售某种手工艺品,若每个获利x元,一天可售出个,则当x=_________元,一天出售该种手工艺品的总利润y最大.16.如图,AB是⊙O的切线,B为切点,AC经过点O,与⊙O分别相交于点D,C,若∠ACB=30°,AB=,则阴影部分的面积是___.17.把球放在长方体纸盒内,球的一部分露出盒外,其截面如图,已知EF=CD=80cm,则截面圆的半径为cm.18.如图△ABC中,∠C=90°,AC=8cm,AB的垂直平分线MN交AC于D,连接BD,若cos∠BDC=,则BC的长为_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)计算:﹣12+﹣(3.14﹣π)0﹣|1﹣|.20.(6分)某校为了解本校九年级男生体育测试中跳绳成绩的情况,随机抽取该校九年级若干名男生,调查他们的跳绳成绩(次/分),按成绩分成,,,,五个等级.将所得数据绘制成如下统计图.根据图中信息,解答下列问题:该校被抽取的男生跳绳成绩频数分布直方图(1)本次调查中,男生的跳绳成绩的中位数在________等级;(2)若该校九年级共有男生400人,估计该校九年级男生跳绳成绩是等级的人数.21.(6分)在一个不透明的布袋里装有4个标有1、2、3、4的小球,它们的形状、大小完全相同,李强从布袋中随机取出一个小球,记下数字为x,王芳在剩下的3个小球中随机取出一个小球,记下数字为y,这样确定了点M的坐标画树状图列表,写出点M所有可能的坐标;求点在函数的图象上的概率.22.(8分)计算:+()-2-8sin60°23.(8分)如图,点O是△ABC的边AB上一点,⊙O与边AC相切于点E,与边BC,AB分别相交于点D,F,且DE=EF.求证:∠C=90°;当BC=3,sinA=时,求AF的长.24.(10分)矩形ABCD一条边AD=8,将矩形ABCD折叠,使得点B落在CD边上的点P处.(1)如图1,已知折痕与边BC交于点O,连接AP、OP、OA.①求证:△OCP∽△PDA;②若△OCP与△PDA的面积比为1:4,求边AB的长.(2)如图2,在(1)的条件下,擦去AO和OP,连接BP.动点M在线段AP上(不与点P、A重合),动点N在线段AB的延长线上,且BN=PM,连接MN交PB于点F,作ME⊥BP于点E.试问动点M、N在移动的过程中,线段EF的长度是否发生变化?若不变,求出线段EF的长度;若变化,说明理由.25.(10分)某景区内从甲地到乙地的路程是,小华步行从甲地到乙地游玩,速度为,走了后,中途休息了一段时间,然后继续按原速前往乙地,景区从甲地开往乙地的电瓶车每隔半小时发一趟车,速度是,若小华与第1趟电瓶车同时出发,设小华距乙地的路程为,第趟电瓶车距乙地的路程为,为正整数,行进时间为.如图画出了,与的函数图象.(1)观察图,其中,;(2)求第2趟电瓶车距乙地的路程与的函数关系式;(3)当时,在图中画出与的函数图象;并观察图象,得出小华在休息后前往乙地的途中,共有趟电瓶车驶过.26.(12分)某文教店老板到批发市场选购A、B两种品牌的绘图工具套装,每套A品牌套装进价比B品牌每套套装进价多2.5元,已知用200元购进A种套装的数量是用75元购进B种套装数量的2倍.求A、B两种品牌套装每套进价分别为多少元?若A品牌套装每套售价为13元,B品牌套装每套售价为9.5元,店老板决定,购进B品牌的数量比购进A品牌的数量的2倍还多4套,两种工具套装全部售出后,要使总的获利超过120元,则最少购进A品牌工具套装多少套?27.(12分)如图,BD为△ABC外接圆⊙O的直径,且∠BAE=∠C.求证:AE与⊙O相切于点A;若AE∥BC,BC=2,AC=2,求AD的长.
参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、D【解析】
解:设方程的另一个根为a,由一元二次方程根与系数的故选可得,解得a=,故选D.2、D【解析】试题解析:因为|+2|=2,|-3|=3,|+4|=4,|-1|=1,由于|-1|最小,所以从轻重的角度看,质量是-1的工件最接近标准工件.故选D.3、C【解析】试题分析:由题意可得,第一小组对应的圆心角度数是:×360°=72°,故选C.考点:1.扇形统计图;2.条形统计图.4、B【解析】
先依据勾股定理求得AB的长,从而可求得两圆的半径为4,然后由∠A+∠B=90°可知阴影部分的面积等于一个圆的面积的.【详解】在△ABC中,依据勾股定理可知AB==8,∵两等圆⊙A,⊙B外切,∴两圆的半径均为4,∵∠A+∠B=90°,∴阴影部分的面积==4π.故选:B.【点睛】本题主要考查的是相切两圆的性质、勾股定理的应用、扇形面积的计算,求得两个扇形的半径和圆心角之和是解题的关键.5、B【解析】分析:根据题意出教室,离门口近,返回教室离门口远,在教室内距离不变,速快跑距离变化快,可得答案.详解:根据题意得,函数图象是距离先变短,再变长,在教室内没变化,最后迅速变短,B符合题意;
故选B.点睛:本题考查了函数图象,根据距离的变化描述函数是解题关键.6、C【解析】
根据比较实数大小的方法进行比较即可.根据正数都大于0,负数都小于0,两个负数绝对值大的反而小即可求解.【详解】因为正数大于负数,两个负数比较大小,绝对值较大的数反而较小,所以-2<-2所以最小的数是-2,故选C.【点睛】此题主要考查了实数的大小的比较,正数都大于0,负数都小于0,两个负数绝对值大的反而小.7、B【解析】
根据矩形的性质得到,CB∥x轴,AB∥y轴,于是得到D、E坐标,根据勾股定理得到ED,连接BB′,交ED于F,过B′作B′G⊥BC于G,根据轴对称的性质得到BF=B′F,BB′⊥ED求得BB′,设EG=x,根据勾股定理即可得到结论.【详解】解:∵矩形OABC,∴CB∥x轴,AB∥y轴.∵点B坐标为(6,1),∴D的横坐标为6,E的纵坐标为1.∵D,E在反比例函数的图象上,∴D(6,1),E(,1),∴BE=6﹣=,BD=1﹣1=3,∴ED==.连接BB′,交ED于F,过B′作B′G⊥BC于G.∵B,B′关于ED对称,∴BF=B′F,BB′⊥ED,∴BF•ED=BE•BD,即BF=3×,∴BF=,∴BB′=.设EG=x,则BG=﹣x.∵BB′2﹣BG2=B′G2=EB′2﹣GE2,∴,∴x=,∴EG=,∴CG=,∴B′G=,∴B′(,﹣),∴k=.故选B.【点睛】本题考查了翻折变换(折叠问题),矩形的性质,勾股定理,熟练掌握折叠的性质是解题的关键.8、C【解析】试题解析:∵抛物线的顶点坐标A(1,3),∴抛物线的对称轴为直线x=-=1,∴2a+b=0,所以①正确;∵抛物线开口向下,∴a<0,∴b=-2a>0,∵抛物线与y轴的交点在x轴上方,∴c>0,∴abc<0,所以②错误;∵抛物线的顶点坐标A(1,3),∴x=1时,二次函数有最大值,∴方程ax2+bx+c=3有两个相等的实数根,所以③正确;∵抛物线与x轴的一个交点为(4,0)而抛物线的对称轴为直线x=1,∴抛物线与x轴的另一个交点为(-2,0),所以④错误;∵抛物线y1=ax2+bx+c与直线y2=mx+n(m≠0)交于A(1,3),B点(4,0)∴当1<x<4时,y2<y1,所以⑤正确.故选C.考点:1.二次函数图象与系数的关系;2.抛物线与x轴的交点.9、B【解析】
解:11人成绩的中位数是第6名的成绩.参赛选手要想知道自己是否能进入前6名,只需要了解自己的成绩以及全部成绩的中位数,比较即可.故选B.【点睛】本题考查统计量的选择,掌握中位数的意义是本题的解题关键.10、B【解析】
根据AB=BC=CD=1,|a|+|b|=2,分四种情况进行讨论判断即可.【详解】∵AB=BC=CD=1,∴当点A为原点时,|a|+|b|>2,不合题意;当点B为原点时,|a|+|b|=2,符合题意;当点C为原点时,|a|+|b|=2,符合题意;当点D为原点时,|a|+|b|>2,不合题意;故选:B.【点睛】此题主要考查了数轴以及绝对值,解题时注意:数轴上某个数与原点的距离叫做这个数的绝对值.11、C【解析】
依据平行线的性质,可得∠BAC的度数,再根据三角形内和定理,即可得到∠2的度数.【详解】解:∵a∥b,∴∠1=∠BAC=40°,又∵∠ABC=90°,∴∠2=90°−40°=50°,故选C.【点睛】本题考查的是平行线的性质,用到的知识点为:两直线平行,内错角相等.12、B【解析】
根据同类二次根式才能合并可对A进行判断;根据二次根式的乘法对B进行判断;先把化为最简二次根式,然后进行合并,即可对C进行判断;根据二次根式的除法对D进行判断.【详解】解:A、与不能合并,所以A选项不正确;B、-=2−=,所以B选项正确;C、×=,所以C选项不正确;D、=÷=2÷=2,所以D选项不正确.故选B.【点睛】此题考查二次根式的混合运算,注意先化简,再进一步利用计算公式和计算方法计算.二、填空题:(本大题共6个小题,每小题4分,共24分.)13、1.1.【解析】分析:由将△ABC绕点A按顺时针旋转一定角度得到△ADE,当点B的对应点D恰好落在BC边上,可得AD=AB,又由∠B=60°,可证得△ABD是等边三角形,继而可得BD=AB=2,则可求得答案.详解:由旋转的性质可得:AD=AB,∵∠B=60°,∴△ABD是等边三角形,∴BD=AB,∵AB=2,BC=3.1,∴CD=BC-BD=3.1-2=1.1.故答案为:1.1.点睛:此题考查了旋转的性质以及等边三角形的判定与性质.此题比较简单,注意掌握旋转前后图形的对应关系,注意数形结合思想的应用.14、④【解析】
根据题意[x)表示大于x的最小整数,结合各项进行判断即可得出答案.【详解】①[0)=1,故本项错误;②[x)−x>0,但是取不到0,故本项错误;③[x)−x⩽1,即最大值为1,故本项错误;④存在实数x,使[x)−x=0.5成立,例如x=0.5时,故本项正确.故答案是:④.【点睛】此题考查运算的定义,解题关键在于理解题意的运算法则.15、1【解析】先根据题意得出总利润y与x的函数关系式,再根据二次函数的最值问题进行解答.解:∵出售某种手工艺品,若每个获利x元,一天可售出(8-x)个,
∴y=(8-x)x,即y=-x2+8x,
∴当x=-=1时,y取得最大值.
故答案为:1.16、﹣【解析】连接OB.∵AB是⊙O切线,∴OB⊥AB,∵OC=OB,∠C=30°,∴∠C=∠OBC=30°,∴∠AOB=∠C+∠OBC=60°,在Rt△ABO中,∵∠ABO=90°,AB=,∠A=30°,∴OB=1,∴S阴=S△ABO﹣S扇形OBD=×1×﹣=﹣.17、1【解析】
过点O作OM⊥EF于点M,反向延长OM交BC于点N,连接OF,设OF=r,则OM=80-r,MF=40,然后在Rt△MOF中利用勾股定理求得OF的长即可.【详解】过点O作OM⊥EF于点M,反向延长OM交BC于点N,连接OF,设OF=x,则OM=80﹣r,MF=40,在Rt△OMF中,∵OM2+MF2=OF2,即(80﹣r)2+402=r2,解得:r=1cm.故答案为1.18、4【解析】试题解析:∵可∴设DC=3x,BD=5x,又∵MN是线段AB的垂直平分线,∴AD=DB=5x,又∵AC=8cm,∴3x+5x=8,解得,x=1,在Rt△BDC中,CD=3cm,DB=5cm,故答案为:4cm.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19、1.【解析】
直接利用绝对值的性质以及零指数幂的性质和负指数幂的性质分别化简得出答案.【详解】解:原式=﹣1++4﹣1﹣(﹣1)=﹣1++4﹣1﹣+1=1.【点睛】本题考查了实数的运算,零指数幂,负整数指数幂,解题的关键是掌握幂的运算法则.20、(1)C;(2)100【解析】
(1)根据中位数的定义即可作出判断;(2)先算出样本中C等级的百分比,再用总数乘以400即可.【详解】解:(1)由直方图中可知数据总数为40个,第20,21个数据的平均数为本组数据的中位数,第20,21个数据的等级都是C等级,故本次调查中,男生的跳绳成绩的中位数在C等级;故答案为C.(2)400=100(人)答:估计该校九年级男生跳绳成绩是等级的人数有100人.【点睛】本题考查了中位数的求法和用样本数估计总体数据,理解相关知识是解题的关键.21、见解析;.【解析】
(1)首先根据题意画出树状图,然后由树状图求得所有等可能的结果;(2)找出点(x,y)在函数y=x+1的图象上的情况,利用概率公式即可求得答案.【详解】画树状图得:共有12种等可能的结果、、、、、、、、、、、;在所有12种等可能结果中,在函数的图象上的有、、这3种结果,点在函数的图象上的概率为.【点睛】本题考查的是用列表法或树状图法求概率,一次函数图象上点的坐标特征.注意树状图法与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;注意概率=所求情况数与总情况数之比.22、4-2【解析】试题分析:原式第一项利用二次根式的化简公式进行化简,第二项利用负指数公式化简,第三项利用特殊角的三角函数值化简,合并即可得到结果试题解析:原式=2+4-8×=2+4-4=4-223、(1)见解析(2)【解析】
(1)连接OE,BE,因为DE=EF,所以=,从而易证∠OEB=∠DBE,所以OE∥BC,从可证明BC⊥AC;(2)设⊙O的半径为r,则AO=5﹣r,在Rt△AOE中,sinA=从而可求出r的值.【详解】解:(1)连接OE,BE,∵DE=EF,∴=∴∠OBE=∠DBE∵OE=OB,∴∠OEB=∠OBE∴∠OEB=∠DBE,∴OE∥BC∵⊙O与边AC相切于点E,∴OE⊥AC∴BC⊥AC∴∠C=90°(2)在△ABC,∠C=90°,BC=3,sinA=,∴AB=5,设⊙O的半径为r,则AO=5﹣r,在Rt△AOE中,sinA=∴∴【点睛】本题考查圆的综合问题,涉及平行线的判定与性质,锐角三角函数,解方程等知识,综合程度较高,需要学生灵活运用所学知识.24、(1)①证明见解析;②10;(2)线段EF的长度不变,它的长度为25..【解析】试题分析:(1)先证出∠C=∠D=90°,再根据∠1+∠3=90°,∠1+∠2=90°,得出∠2=∠3,即可证出△OCP∽△PDA;根据△OCP与△PDA的面积比为1:4,得出CP=12(2)作MQ∥AN,交PB于点Q,求出MP=MQ,BN=QM,得出MP=MQ,根据ME⊥PQ,得出EQ=12PQ,根据∠QMF=∠BNF,证出△MFQ≌△NFB,得出QF=12QB,再求出EF=12试题解析:(1)如图1,∵四边形ABCD是矩形,∴∠C=∠D=90°,∴∠1+∠3=90°,∵由折叠可得∠APO=∠B=90°,∴∠1+∠2=90°,∴∠2=∠3,又∵∠D=∠C,∴△OCP∽△PDA;∵△OCP与△PDA的面积比为1:4,∴OPPA=CPDA=14(2)作MQ∥AN,交PB于点Q,如图2,∵AP=AB,MQ∥AN,∴∠APB=∠ABP=∠MQP,∴MP=MQ,∵BN=PM,∴BN=QM.∵MP=MQ,ME⊥PQ,∴EQ=12PQ.∵MQ∥AN,∴∠QMF=∠BNF,在△MFQ和△NFB中,∵∠QFM=∠NFB,∠QMF=∠BNF,MQ=BN,∴△MFQ≌△NFB(AAS),∴QF=12QB,∴EF=EQ+QF=12PQ+12QB=12PB,由(1)中的结论可得:PC=4,BC=8,∠C=90°,∴PB=82+42考点:翻折变换(折叠问题);矩形的性质;相似形综合题.25、(1)0.8;2.1;(2);(2)图像见解析,2【解析】
(1)根据小华走了4千米后休息了一段时间和小华的速度即可求出a的值,用剩下的路程除以速度即可求出休息后所用的时间,再加上1.5即为b的值;(2)先求出电瓶车的速度,再根据路程=两地间距-速度×时间即可得出答案;(2)结合的图象即可画出的图象,观察图象即可得出答案.【详解】解:(1),故答案为:0.8;2.1.(2)根据题意得:电瓶车的速度为∴.(2)画出函数图象,如图所示.观察函数图象,可知:小华在休息后前往乙地的途中,共有2趟电瓶车驶过.故答案为:2.【点睛】本题主要考查一次函数的应用,能够从图象上获取有效信息是解题的关键.26、(1)A种品牌套装每套
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- BIM工程师-全国《BIM应用技能资格》考前冲刺1
- 北师大版小学四年级上册数学教案(全册)
- 苏教版一年级数学下册教案
- 2024高中地理第1章地理环境与区域发展第1节地理环境对区域发展的影响精练含解析新人教版必修3
- 2024高中语文第5单元庄子蚜第1课无端崖之辞练习含解析新人教版选修先秦诸子蚜
- 2024高中语文第六单元文无定格贵在鲜活种树郭橐驼传训练含解析新人教版选修中国古代诗歌散文欣赏
- 2024高考化学一轮复习专练28热化学方程式的书写及正误判断含解析新人教版
- 2024高考化学一轮复习第一部分考点16元素周期表强化训练含解析
- 2024高考历史一轮复习方案专题四世界政治制度的演变与发展第11讲民主政治的扩展教学案+练习人民版
- 2024高考地理一轮复习第二章第1讲冷热不均引起大气运动教案含解析新人教版
- 缠绕膜项目实施方案
- 急性胰腺炎护理查房-5
- 门窗幕墙密封条培训
- 关于成立低空经济公司可行性分析报告
- GB/T 44545-2024制冷系统试验
- 北师大版四年级数学上册口算天天练题卡2
- 滑模施工计算书及相关图纸
- DB11T 2279-2024 社会单位消防安全评估规范
- 《电力电缆试验》课件
- JJF 2122-2024 机动车测速仪现场测速标准装置校准规范
- 充电桩四方协议书范本
评论
0/150
提交评论