仪器分析 第5章 紫外-可见光分光光度法_第1页
仪器分析 第5章 紫外-可见光分光光度法_第2页
仪器分析 第5章 紫外-可见光分光光度法_第3页
仪器分析 第5章 紫外-可见光分光光度法_第4页
仪器分析 第5章 紫外-可见光分光光度法_第5页
已阅读5页,还剩99页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第五章

紫外可见光分光光度法

利用被测物质的分子对紫外-可见光选择性吸收的特性而建立起来的方法。一.分子吸收光谱的产生在分子中存在着电子的运动,以及组成分子的各原子间的振动和分子作为整体的转动。分子的总能量可以认为等于这三种运动能量之和。即:E分子=E电子+E振动+E转动分子中的这三种运动状态都对应有一定的能级。即在分子中存在着电子能级、振动能级和转动能级。这三种能级都是量子化的。其中电子能级的间距最大(每个能级间的能量差叫间距或能级差),振动能级次之,转动能级的间距最小。如果用△E电子,△E振动以及△E转动表示各能级差,则:△E­电子>△E­振动>△E­转动由于组成分子能量的几部分都具有一定的能级,所以分子也具有一定的能级,如图是双原子分子的能级图:由图可见,在每一个电子能级上有许多间距较小的振动能级,在每一个振动能级上又有许多间距更小的转动能级。由于这个原因,处在同一电子能级的分子,可能因振动能量不同而处于不同的能级上。同理,处于同一电子能级和同一振动能级上的分子,由于转动能量不同而处于不同的能级上。当用光照射分子时,分子就要选择性的吸收某些波长(频率)的光而由较低的能级E跃迁到较高能级E‘上,所吸收的光的能量就等于两能级的能量之差:△E=E‘-E其光的频率为:γ=△E/h或光的波长为:λ=hc/△E由于分子选择性的吸收了某些波长的光,所以这些光的能量就会降低,将这些波长的光及其所吸收的能量按一定顺序排列起来,就得到了分子的吸收光谱。二、分子吸收光谱类型

远红外光谱、红外光谱及紫外-可见光谱三类。分子的转动能级跃迁,需吸收波长为远红外光,因此,形成的光谱称为转动光谱或远红外光谱。分子的振动能级差一般需吸收红外光才能产生跃迁。在分子振动时同时有分子的转动运动。这样,分子振动产生的吸收光谱中,包括转动光谱,故常称为振-转光谱。由于它吸收的能量处于红外光区,故又称红外光谱。电子的跃迁吸收光的波长主要在真空紫外到可见光区,对应形成的光谱,称为电子光谱或紫外-可见吸收光谱。三.有机化合物的紫外—可见吸收光谱(一)、跃迁类型主要有σ→σ*、n→σ*、n→π*、π→π*

*

n*

n***nσ→σ*

跃迁主要发生在真空紫外区。b.π→π*

跃迁吸收的波长较长,孤立的π→π*跃迁一般在200nm左右C、n→π*

跃迁一般在近紫外区(200~400nm),吸光强度较小,n→σ*

跃迁吸收波长仍然在150~250nm范围,因此在紫外区不易观察到这类跃迁。在以上几种跃迁中,只有-*和n-*两种跃迁的能量小,相应波长出现在近紫外区甚至可见光区,且对光的吸收强烈,是我们研究的重点。(二)、常用术语1,生色团:有机物中含有n→π*或π→π*跃迁的基团;2,助色团:助色团是指带有非键电子对的基团;可使生色团吸收峰向长波方向移动并提高吸收强度的一些官能团,常见助色团助色顺序为:-F<-CH3<-Br<-OH<-OCH3<-NH2<-NHCH3<-NH(CH3)2<-NHC6H5<-O-3,红移与蓝移(紫移)某些有机化合物经取代反应引入含有未共享电子对的基团之后,吸收峰的波长将向长波方向移动,这种效应称为红移效应。在某些生色团如羰基的碳原子一端引入一些取代基之后,吸收峰的波长会向短波方向移动,这种效应称为蓝移(紫移)效应。如-R,-OCOR,四.溶剂对紫外、可见吸收光谱的影响改变溶剂的极性,会引起吸收带形状的变化。改变溶剂的极性,还会使吸收带的最大吸收波长发生变化。下表为溶剂对一种丙酮紫外吸收光谱的影响。

正己烷CHCl3CH3OHH2O

*230238237243n

*

329315309305由于溶剂对电子光谱图影响很大,因此,在吸收光谱图上或数据表中必须注明所用的溶剂。与已知化合物紫外光谱作对照时也应注明所用的溶剂是否相同。在进行紫外光谱法分析时,必须正确选择溶剂。五.吸收曲线(吸收光谱)及最大吸收波长1.吸收曲线:每一种物质对不同波长光的吸收程度是不同的。如果我们让各种不同波长的光分别通过被测物质,分别测定物质对不同波长光的吸收程度。以波长为横坐标,吸收程度为纵坐标作图所得曲线。例:丙酮

max=279nm(=15)

nm300400500600700/nm350525545Cr2O72-MnO4-1.00.80.60.40.2Absorbance350Cr2O72-、MnO4-的吸收光谱2、吸收峰和最大吸收波长max吸收曲线表明了某种物质对不同波长光的吸收能力分布。曲线上的各个峰叫吸收峰。峰越高,表示物质对相应波长的光的吸收程度越大。其中最高的那个峰叫最大吸收峰,它的最高点所对应的波长叫最大吸收波长,用λmax表示。

3.物质的吸收曲线和最大吸收波长的特点:

1)不同的物质,吸收曲线的形状不同,最大吸收波长不同。2)对同一物质,其浓度不同时,吸收曲线形状和最大吸收波长不变,只是吸收程度要发生变化,表现在曲线上就是曲线的高低发生变化。六.光的选择性吸收与物质颜色的关系:1.可见光的颜色和互补色:在可见光范围内,不同波长的光的颜色是不同的。平常所见的白光(日光、白炽灯光等)是一种复合光,它是由各种颜色的光按一定比例混合而得的。利用棱镜等分光器可将它分解成红、橙、黄、绿、青、蓝、紫等不同颜色的单色光。白光除了可由所有波长的可见光复合得到外,还可由适当的两种颜色的光按一定比例复合得到。能复合成白光的两种颜色的光叫互补色光。/nm颜色互补光400-450紫黄绿450-480蓝黄480-490绿蓝橙490-500蓝绿红500-560绿红紫560-580黄绿紫580-610黄蓝610-650橙绿蓝650-760红蓝绿2.物质的颜色与吸收光的关系:当白光照射到物质上时,如果物质对白光中某种颜色的光产生了选择性的吸收,则物质就会显示出一定的颜色。物质所显示的颜色是吸收光的互补色。完全吸收完全透过吸收黄色光光谱示意表观现象示意复合光物质颜色吸收光物质颜色吸收光颜色波长范围(nm)颜色波长范围(nm)黄绿紫400~450紫绿560~580黄蓝450~480蓝黄580~600橙绿蓝480~490绿蓝橙600~650红蓝绿490~500蓝绿红650~760紫红绿500~560

§5—2光吸收定律——朗白—比耳定律一.基本概念:当强度为I0的一定波长的单色入射光束通过装有均匀待测物的溶液介质时,该光束将被部分吸收Ia,部分反射Ir,余下的则通过待测物的溶液It,即有:I0=Ia+It+Ir如果吸收介质是溶液(测定中一般是溶液),式中反射光强度主要与器皿的性质及溶液的性质有关,在相同的测定条件下,这些因素是固定不变的,并且反射光强度一般很小。所以可忽略不记,这样:Io=Ia+It即:一束平行单色光通过透明的吸收介质后,入射光被分成了吸收光和透过光。待测物的溶液对此波长的光的吸收程度可以透光率T和吸光度A用来表示。透光率——透光率表示透过光强度与入射光强度的比值,用T来表示,计算式为:T=It/IoT常用百分比(T%)表示。吸光度——透光率的倒数的对数叫吸光度。用A表示:A=-lgT二、朗伯—比耳定律:(一)定律内容:当用一束强度为Io的单色光垂直通过厚度为b、吸光物质浓度为c的溶液时,溶液的吸光度正比于溶液的厚度b和溶液中吸光物质的浓度c的乘积。数学表达式为:A=-lgT=Kbc

(二)比例常数K的几种表示方法:吸收定律的数学表达式中的比例常数叫“吸收系数”,它的大小可表示出吸光物质对某波长光的吸收本领(即吸收程度)。它与吸光物质的性质、入射光的波长及温度等因素有关。另外,K的值随着b和c的单位不同而不同。下面就介绍K的几种不同的表示方法。1.吸光系数:当溶液浓度c的单位为g/L,溶液液层厚度b的单位为cm时,K叫“吸光系数”,用a表示,其单位为L/g·cm,此时:A=abc由式可知:a=A/bc,它表示的是当c=1g/L、b=1cm时溶液的吸光度。2.摩尔吸光系数:当溶液浓度c的单位为mol/L,液层厚度b的单位为cm时,K叫“摩尔吸光系数”,用ελ表示,其单位为L/mol·cm,此时:A=ελbc由此式可知:ελ=A/bc,它表示的是当c=1mol/L,b=1cm时,物质对波长为λ的光的吸光度。对于K的这两种表示方法,它们之间的关系为:ελ=aMM为吸光物质的分子量。ελ和a的大小都可以反映出吸光物质对波长为λ的单色光的吸收能力。但更常用和更好的是用ελ来表示吸光物质对波长为λ的光的吸收能力。摩尔吸光系数越大,表示物质对波长为λ的光的吸收能力越强,同时在分光光度法中测定的灵敏度也越大。

(三)吸收定律的适用条件:1.必须是使用单色光为入射光;2.溶液为稀溶液;3.吸收定律能够用于彼此不相互作用的多组分溶液。它们的吸光度具有加合性,且对每一组分分别适用,即:A总=A1+A2+A3…+An=ε1bc1+ε2bc2+ε3bc3…+εnbcn4.吸收定律对紫外光、可见光、红外光都适用三.实际溶液对吸收定律的偏离及原因:(一)偏离:被测物质浓度与吸光度不成线性关系的现象,如下图。AC(二)偏离吸收定律的原因:1.入射光为非单色光:严格地说吸收定律只适用于入射光为单色光的情况。但在紫外可见光分光光度法中,入射光是由连续光源经分光器分光后得到的,这样得到的入射光并不是真正的单色光,而是一个有限波长宽度的复合光,这就可能造成对吸收定律的偏离。对非单色光引起的偏离,其原因是由于同一物质对不同波长的光的摩尔吸光系数不同造成的。所以只要在入射光的波长范围内,摩尔吸光系数差别不是太大,由此引起的偏离是较小的。2.非平行光和光的散射:当入射光是非平行光时,所有光通过介质的光的光程不同,引起小的偏离。另外,当溶液中含有悬浮物或胶粒等散射质点时,入射光通过溶液时就会有一部分光因散射而损失掉,使透过光强度减小,测得的吸光度增大,从而引起偏离吸收定律。3.化学因素引起的偏离:1)离解作用:2)酸效应:3)溶剂作用:§5—3紫外-可见分光光度计一.分光光度计的主要部件和工作原理:0.575光源单色器吸收池检测器显示(一)光源:用于提供足够强度和稳定的连续光谱。分光光度计中常用的光源有热辐射光源和气体放电光源两类。热辐射光源用于可见光区,如钨丝灯和卤钨灯;气体放电光源用于紫外光区,如氢灯和氘灯。钨灯和碘钨灯可使用的范围在340~2500nm。氢灯和氘灯。它们可在160~375nm范围内产生连续光源。另外,为了使光源发出的光在测量时稳定,光源的供电一般都要用稳压电源,即加有一个稳压器。(二)分光系统:分光系统也叫单色器。单色器是能从光源辐射的复合光中分出单色光的光学装置,其主要功能:产生光谱纯度高的光波且波长在紫外可见区域内任意可调。单色器一般由入射狭缝、准光器(透镜或凹面反射镜使入射光成平行光)、色散元件、聚焦元件和出射狭缝等几部分组成。其核心部分是色散元件,起分光的作用。入射狭缝准直透镜棱镜聚焦透镜出射狭缝白光红紫λ1λ2800600500400光栅是利用光的衍射与干涉作用制成的,它可用于紫外、可见及红外光域,而且在整个波长区具有良好的、几乎均匀一致的分辨能力。(三)吸收池(比色皿):在紫外可见分光光度法中,一般都是用液体溶液进行测定的,用于盛放试液的器皿就是吸收池或比色皿。有玻璃和石英两种。(四)光检测系统:用于检测光信号。利用光电效应将光强度信号转换成电信号的装置,也叫光电器件。分光光法中,得到的是一定强度的光信号,这个信号需要用一定的部件检测出来。检测时,需要将光信号转换成电信号才能测量得到。光检测系统的作用就是进行这个转换。常用的光检测系统主要有光电池、光电管和光电倍增管。1、光电池:用半导体材料制成的光电转换器。用得最多的是硒光电池。其结构和作用原理为:硒光电池光电管:它是在抽成真空或充有惰性气体的玻璃或石英泡内装上2个电极构成,其结构如图:12341是光电管的阳极,它由一个镍环或镍片组成;2是光电管的阴极,它由一个金属片上涂一层光敏物质构成,如涂上一层氧化铯。涂上的光敏物质具有这样一个特性:当光照射到光敏物质上时,它能够放出电子;红敏管625-1000nm蓝敏管200-625nm光电管光电倍增管:它是一个非常灵敏的光电器件,可以把微弱的光转换成电流。其灵敏度比前2种都要高得多。它是利用二次电子发射以放大光电流,放大倍数可达到108倍。光电倍增管1个光电子可产生106~107个电子(五)信号指示系统它的作用是放大信号并以适当方式指示或记录下来。常用的信号指示装置有直读检流计、电位调节指零装置以及数字显示或自动记录装置等。很多型号的分光光度计装配有微处理机,一方面可对分光光度计进行操作控制,另一方面可进行数据处理。二、分光光度计的类型:(一)单光束分光光度计:0.575光源单色器吸收池检测器显示这类分光光度计的特点是:结构简单,价格便宜。主要适用于定量分析,而不适用于作定性分析。另外,结果受电源的波动影响较大。(二)单波长双光束分光光度计比值光源单色器吸收池检测器显示光束分裂器双光束分光光度计是自动比较了透过参比溶液和样品溶液的光的强度,它不受光源(电源)变化的影响。双光束分光光度计还能进行波长扫描,并自动记录下各波长下的吸光度,很快就可得到试液的吸收光谱。所以能用于定性分析。光源单色器单色器检测器切光器狭缝吸收池(三)双光束双波长分光光度计:双波长分光光度法21XAY∵∴Y

的存在不干扰X的测定三、分光光度计的校正通常在实验室工作中,验收新仪器或实验室使用过一段时间后都要进行波长校正和吸光度校正。建议采用下述的较为简便和实用的方法来进行校正:镨铷玻璃或钬玻璃都有若干特征的吸收峰,可用来校正分光光度计的波长标尺,前者用于可见光区,后者则对紫外和可见光区都适用。也可用K2CrO4标准溶液来校正吸光度标度。§5—4光度测量误差及测量条件的选择光度分析的误差来源于两方面:一方面是各种化学因素引入的误差;另一方面是仪器测量不准引入的误差。对于化学因素,前面巳经讲过,现在我们来看仪器测量不准引入的误差。一.仪器测量误差:任何光度计都有一定的测量误差,测量误差的来源主要是光源的发光强度不稳定,光电效应的非线性,电位计的非线性,杂散光的影响,单色器的光不纯等等因素,对于一台固定的光度计来说,以上因素都是固定的,也就是说,它的误差具有一定的稳定性。其大小可由光度计的透光率的读数准确度表现出来。具体说来,对于一个给定的光度计来说,其透光率的读数误差等于常数△T,约为0.01~0.02。但透光率的读数误差不能代表测定结果的误差。测量结果的误差常用浓度的相对误差△C/C表示(△C表示测量结果的浓度的绝对误差)。它的大小是与△T的大小有关的。而同样大小的△T在透光率不同时(溶液浓度不同),所引起的浓度相对误差是不同的。T%95908070△c/c△T20.510.65.64.0△T10.35.32.82.0T%

60504030△c/c△T3.262.882.732.77

△T1.621.441.371.39T%

20105

△c/c△T3.114.346.7

△T1.562.173.34

T%在80~10%即A=1~0.1时的浓度测量的相对误差较小。对于精度较好的仪器,当T%在60~20%(A=0.2~0.7)时,测量误差约为1%。当T=0.368或A=0.434时,浓度的测量误差最小。二.测量条件的选择:1.测量波长的选择:一般选用待测物质的最大吸收波长作为测量波长(入射光)但当在最大吸收波长处有干扰时,则应根据“吸收最大干扰最小”的原则来选择波长。2.控制适当的吸光度范围:由测量误差可知,当吸光度在0.2~0.8之间时,测量误差最小,所以应尽量控制吸光度在此范围进行测定。控制的方法为:1)控制溶液的浓度;2)选用适当厚度的比色皿;3.选择适当的参比溶液:a.如果仅有显色剂与被测组分反应的产物有吸收,则可以用纯溶剂作参比溶液;b.如果显色剂和其他试剂有颜色,则用试剂溶液作参比液;c.如果显色剂与试剂中干扰组分反应,其反应产物有吸收,则按如下方式配置参比液:(1)吸收较弱时,直接用试剂溶液作参比液;(2)吸收较强时,可选用合适的掩蔽剂将被测组分掩蔽后再加显色剂和其他试剂,以此配制的溶液作参比液。§5—6紫外—可见分光光度法的应用一.紫外-可见分光光度法在定性分析中的应用(一)定性分析:(二)结构分析:(三)分析方法:1.比较光谱法,2.制作试样的吸收曲线并与标准紫外光谱对照;3.利用Woodward-Fieser经验规则求最大吸收波长。伍德沃德(Woodward)规则1)共轭二烯最大吸收位置的计算值母体:非环或异环二烯烃基准值214nm同环二烯烃253nm延伸双键30环外双键5共轭体系上取代烷基5OR6SR30ClBr5位移增量(nm)2),不饱

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论