版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第页码48页/总NUMPAGES总页数48页2022-2023学年贵州省铜仁市中考数学专项突破仿真模拟试题(一模)一、选一选(本大题共14小题,每小题3分,共42分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.的相反数是()A.3 B.﹣3 C. D.2.如图,直线m∥n,∠1=70°,∠2=30°,则∠A等于(
)A.30° B.35° C.40° D.50°3.下列计算,正确的是()A.a2•a2=2a2 B.a2+a2=a4 C.(﹣a2)2=a4 D.(a+1)2=a2+14.没有等式组的解集在数轴上表示为()AB.C.D.5.下面的几何体中,主视图为圆的是()A. B. C. D.6.甲、乙两人参加社会实践,随机选择“打扫社区卫生”和“参加社会”其中一项,那么两人同时选择“参加社会”的概率为()A. B. C. D.7.宿州学院排球队有12名队员,队员的年龄情况如图所示,那么球队队员年龄的众数、中位数分别是()A.19,19 B.19,20 C.20,20 D.22,198.如图,△ABC中,D、E分别在边AB、AC上,DE∥BC,BD=2AD,若DE=2,则BC=()A.3 B.4 C.5 D.69.小亮用28元钱买了甲、乙两种水果,甲种水果每千克4元,乙种水果每千克6元,且乙种水果比甲种水果少买了2千克,求小亮两种水果各买了多少千克?设小亮买了甲种水果x千克,乙种水果y千克,则可列方程组为()A. B. C. D.10.如图,菱形ABCD对角线AC,BD相交于点O,有下列结论:①OA=OD,②AC⊥BD,③∠1=∠2,④S菱形ABCD=AC•BD.其中正确的序号是()A.①② B.③④ C.②④ D.②③11.如图,AB是⊙O的弦,BC与⊙O相切于点B,连接OA,OB,若∠ABC=65°,则∠A等于()A.20° B.25° C.35° D.75°12.如图,下列各三角形中的三个数之间均具有相同的规律,根据此规律,一个三角形中y与n之间的关系是()A.y=2n+1 B.y=2n+n C.y=2n+1+n D.y=2n+n+113.如图,热气球的探测器显示,从热气球A处看一栋楼顶部B处的仰角为30°,看这栋楼底部C处的俯角为60°,热气球A处与楼的水平距离为120m,则这栋楼的高度为()A.160m B.120m C.300m D.160m14.反比例函数y=的图象与直线y=﹣x+2有两个交点,且两交点横坐标的积为负数,则t的取值范围是()A.t< B.t> C.t≤ D.t≥二、填空题(本题共5小题,每小题3分,共15分)15.因式分解:=_______________.16.化简:=_____.17.一个n边形的内角和为1080°,则n=________.18.如图,矩形ABCD中,AB=3,对角线AC,BD相交于点O,AE垂直平分OB于点E,则AD的长为____________.19.已知:=3,=10,=15,…,观察上面的计算过程,寻找规律并计算:=_____.三、解答题(本大题共7小题,共63分)20.计算:__________.21.某校为地开展“传统文化进校园”,随机抽查了部分学生,了解他们最喜爱的传统文化项目类型(分为书法、围棋、戏剧、国画共4类),并将统计结果绘制成如图没有完整的频数分布表及频数分布条形图.最喜爱的传统文化项目类型频数分布表项目类型频数频率书法类18a围棋类14028喜剧类80.16国画类b0.20根据以上信息完成下列问题:(1)直接写出频数分布表中a的值;(2)补全频数分布条形图;(3)若全校共有学生1500名,估计该校最喜爱围棋的学生大约有多少人?22.某服装店用4500元购进一批衬衫,很快售完,服装店老板又用2100元购进第二批该款式的衬衫,进货量是次的一半,但进价每件比批降低了10元.(1)这两次各购进这种衬衫多少件?(2)若批衬衫的售价是200元/件,老板想让这两批衬衫售完后的总利润没有低于1950元,则第二批衬衫每件至少要售多少元?23.如图,AB为⊙O的直径,C是⊙O上一点,过点C的直线交AB的延长线于点D,AE⊥DC,垂足为E,F是AE与⊙O的交点,AC平分∠BAE(1)求证:DE是⊙O的切线;(2)若AE=6,∠D=30°,求图中阴影部分面积.24.甲、乙两人沿同一路线登山,图中线段OC、折线OAB分别是甲、乙两人登山的路程y(米)与登山时间x(分)之间的函数图象.请根据图象所提供的信息,解答如下问题:(1)求甲登山路程与登山时间之间的函数关系式,并写出自变量x的取值范围;(2)求乙出发后多长时间追上甲?此时乙所走的路程是多少米?25.如图1,△ABC等腰直角三角形,∠BAC=90°,AB=AC,四边形ADEF是正方形,点B、C分别在边AD、AF上,此时BD=CF,BD⊥CF成立.(1)当△ABC绕点A逆时针旋转θ(0°<θ<90°)时,如图2,BD=CF成立吗?若成立,请证明,若没有成立,请说明理由;(2)当△ABC绕点A逆时针旋转45°时,如图3,延长BD交CF于点H.①求证:BD⊥CF;②当AB=2,AD=3时,求线段DH的长.26.如图,抛物线A(﹣1,0),B(5,0),C(0,)三点.(1)求抛物线的解析式;(2)在抛物线的对称轴上有一点P,使PA+PC的值最小,求点P的坐标;(3)点M为x轴上一动点,在抛物线上是否存在一点N,使以A,C,M,N四点构成的四边形为平行四边形?若存在,求点N的坐标;若没有存在,请说明理由.2022-2023学年贵州省铜仁市中考数学专项突破仿真模拟试题(一模)一、选一选(本大题共14小题,每小题3分,共42分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.的相反数是()A.3 B.﹣3 C. D.【正确答案】D【分析】在一个数前面放上“﹣”,就是该数的相反数.【详解】解:的相反数为﹣.故选:D.本题考查了相反数的概念,求一个数的相反数只要改变这个数的符号即可.2.如图,直线m∥n,∠1=70°,∠2=30°,则∠A等于(
)A.30° B.35° C.40° D.50°【正确答案】C【详解】试题分析:已知m∥n,根据平行线的性质可得∠3=∠1=70°.又因∠3是△ABD的一个外角,可得∠3=∠2+∠A.即∠A=∠3-∠2=70°-30°=40°.故答案选C.考点:平行线的性质.3.下列计算,正确的是()A.a2•a2=2a2 B.a2+a2=a4 C.(﹣a2)2=a4 D.(a+1)2=a2+1【正确答案】C【详解】解:A.故错误,没有符合题意;B.故错误,没有符合题意;C.正确,符合题意;D.,没有符合题意故选C.本题考查合并同类项,同底数幂相乘;幂的乘方,以及完全平方公式的计算,掌握运算法则正确计算是解题关键.4.没有等式组的解集在数轴上表示为()A. B. C. D.【正确答案】B【分析】分别求出每一个没有等式的解集,根据“大于向右,小于向左,包括端点用实心,没有包括端点用空心”的原则即可得答案.【详解】解:,解没有等式2x−1≤5,得:x≤3,解没有等式8−4x<0,得:x>2,故没有等式组的解集为:2<x≤3,故选:B.本题考查的是解一元没有等式组,正确求出每一个没有等式解集是基础,熟悉在数轴上表示没有等式解集的原则“大于向右,小于向左,包括端点用实心,没有包括端点用空心”是解题的关键.5.下面的几何体中,主视图为圆的是()A. B. C. D.【正确答案】C【详解】解:A、的主视图是矩形,故A没有符合题意;B、的主视图是正方形,故B没有符合题意;C、的主视图是圆,故C符合题意;D、的主视图是三角形,故D没有符合题意;故选:C.6.甲、乙两人参加社会实践,随机选择“打扫社区卫生”和“参加社会”其中一项,那么两人同时选择“参加社会”的概率为()A. B. C. D.【正确答案】B【详解】试题解析:可能出现的结果小明打扫社区卫生打扫社区卫生参加社会参加社会小华打扫社区卫生参加社会参加社会打扫社区卫生由上表可知,可能的结果共有种,且都是等可能的,其中两人同时选择“参加社会”的结果有种,则所求概率故选B.点睛:求概率可以用列表法或者画树状图的方法.7.宿州学院排球队有12名队员,队员的年龄情况如图所示,那么球队队员年龄的众数、中位数分别是()A.19,19 B.19,20 C.20,20 D.22,19【正确答案】A【分析】根据条形统计图可以的这组数据的中位数和众数,本题得以解决.【详解】由条形统计图可知,某支青年排球队12名队员年龄的众数是19,中位数是19,故选A.本题考查中位数和众数的定义,解题的关键是明确众数和中位数的定义,会找一组数据的中位数和众数.8.如图,△ABC中,D、E分别在边AB、AC上,DE∥BC,BD=2AD,若DE=2,则BC=()A.3 B.4 C.5 D.6【正确答案】D【详解】试题解析:∵BD=2AD,DE=2,∵,即解得BC=6.故选D.9.小亮用28元钱买了甲、乙两种水果,甲种水果每千克4元,乙种水果每千克6元,且乙种水果比甲种水果少买了2千克,求小亮两种水果各买了多少千克?设小亮买了甲种水果x千克,乙种水果y千克,则可列方程组为()A. B. C. D.【正确答案】A【分析】设小亮买了甲种水果x千克,乙种水果y千克,根据两种水果共花去28元,乙种水果比甲种水果少买了2千克,据此列方程组.【详解】设小亮买了甲种水果x千克,乙种水果y千克,由题意得:.故选:A.本题考查了由实际问题抽象出二元方程组,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程组.10.如图,菱形ABCD对角线AC,BD相交于点O,有下列结论:①OA=OD,②AC⊥BD,③∠1=∠2,④S菱形ABCD=AC•BD.其中正确的序号是()A.①② B.③④ C.②④ D.②③【正确答案】D【详解】试题解析:∵四边形ABCD是菱形,∴①OA=OC,故此选项错误;②AC⊥BD,正确;③∠1=∠2,正确;④S菱形ABCD=AC⋅BD,故此选项错误.故选D点睛:直接利用菱形的性质对角线对角线互相垂直,并且每一条对角线平分一组对角;菱形面积=对角线乘积的一半.11.如图,AB是⊙O的弦,BC与⊙O相切于点B,连接OA,OB,若∠ABC=65°,则∠A等于()A.20° B.25° C.35° D.75°【正确答案】B【详解】试题解析:∵BC与相切于点B,故选B.
12.如图,下列各三角形中的三个数之间均具有相同的规律,根据此规律,一个三角形中y与n之间的关系是()A.y=2n+1 B.y=2n+n C.y=2n+1+n D.y=2n+n+1【正确答案】B【详解】∵观察可知:左边三角形的数字规律为:1,2,…,n,右边三角形的数字规律为:2,,…,,下边三角形的数字规律为:1+2,,…,,∴一个三角形中y与n之间的关系式是y=2n+n.故选B.考点:规律型:数字的变化类.13.如图,热气球的探测器显示,从热气球A处看一栋楼顶部B处的仰角为30°,看这栋楼底部C处的俯角为60°,热气球A处与楼的水平距离为120m,则这栋楼的高度为()A.160m B.120m C.300m D.160m【正确答案】A【详解】如图,过点A作AD⊥BC于点D,根据题意得∠BAD=30°,∠CAD=60°,AD=120m,在Rt△ABD中,求得BD=AD•tan30°=120×=40m,在Rt△ACD中,求得CD=AD•tan60°=120×=120m,所以BC=BD+CD=160m.故答案选A.考点:解直角三角形的应用.14.反比例函数y=的图象与直线y=﹣x+2有两个交点,且两交点横坐标的积为负数,则t的取值范围是()A.t< B.t> C.t≤ D.t≥【正确答案】B【分析】将函数解析式代入到反比例函数解析式中,整理得出x2﹣2x+1﹣6t=0,又因两函数图象有两个交点,且两交点横坐标积为负数,根据根的判别式以及根与系数的关系可求解.【详解】由题意可得:﹣x+2=,所以x2﹣2x+1﹣6t=0,∵两函数图象有两个交点,且两交点横坐标的积为负数,∴解没有等式组,得t>.故选:B.点睛:此题主要考查了反比例函数与函数的交点问题,关键是利用两个函数的解析式构成方程,再利用一元二次方程的根与系数的关系求解.二、填空题(本题共5小题,每小题3分,共15分)15.因式分解:=_______________.【正确答案】a(a+b)(a-b).【详解】分析:本题考查的是提公因式法和利用平方差公式分解因式.解析:原式=a(a+b)(a-b).故答案a(a+b)(a-b).16.化简:=_____.【正确答案】a【详解】试题解析.所以本题的正确答案为.17.一个n边形的内角和为1080°,则n=________.【正确答案】8【分析】直接根据内角和公式计算即可求解.【详解】解:(n﹣2)•180°=1080°,解得n=8.故答案为8.主要考查了多边形的内角和公式.多边形内角和公式:.18.如图,矩形ABCD中,AB=3,对角线AC,BD相交于点O,AE垂直平分OB于点E,则AD的长为____________.【正确答案】【详解】解:∵四边形ABCD是矩形,∴OB=OD,OA=OC,AC=BD,∴OA=OB,∵AE垂直平分OB,∴AB=AO,∴OA=AB=OB=3,∴BD=2OB=6,∴AD=.故.此题考查了矩形的性质、等边三角形的判定与性质、线段垂直平分线的性质、勾股定理;熟练掌握矩形的性质,证明三角形是等边三角形是解决问题的关键.19.已知:=3,=10,=15,…,观察上面的计算过程,寻找规律并计算:=_____.【正确答案】210【分析】根据计算可得.【详解】解:,故210.本题主要考查有理数的乘法,解题的关键是根据已知等式得出计算公式.三、解答题(本大题共7小题,共63分)20.计算:__________.【正确答案】8.【分析】由立方根、乘方、零指数幂的运算法则进行计算,即可得到答案.【详解】解:原式.故8.本题考查了立方根、乘方、零指数幂的运算法则,解题的关键是熟练掌握运算法则进行解题.21.某校为地开展“传统文化进校园”,随机抽查了部分学生,了解他们最喜爱的传统文化项目类型(分为书法、围棋、戏剧、国画共4类),并将统计结果绘制成如图没有完整的频数分布表及频数分布条形图.最喜爱的传统文化项目类型频数分布表项目类型频数频率书法类18a围棋类140.28喜剧类80.16国画类b0.20根据以上信息完成下列问题:(1)直接写出频数分布表中a的值;(2)补全频数分布条形图;(3)若全校共有学生1500名,估计该校最喜爱围棋的学生大约有多少人?【正确答案】(1)a=0.36;(2)补图见解析;(3)420人.【分析】(1)首先根据围棋类是14人,频率是0.28,据此即可求得总人数,然后利用18除以总人数即可求得a的值;用50乘以0.20求出b的值,即可解答;(2)根据b的值,画出直方图即可;(3)用总人数1500乘以喜爱围棋的学生频率即可求解;【详解】(1)14÷0.28=50(人),a=18÷50=0.36.(2)b=50×0.20=10,频数分布直方图,如图所示,(3)1500×0.28=420(人),答:若全校共有学生1500名,估计该校最喜爱围棋的学生大约有420人.22.某服装店用4500元购进一批衬衫,很快售完,服装店老板又用2100元购进第二批该款式的衬衫,进货量是次的一半,但进价每件比批降低了10元.(1)这两次各购进这种衬衫多少件?(2)若批衬衫的售价是200元/件,老板想让这两批衬衫售完后的总利润没有低于1950元,则第二批衬衫每件至少要售多少元?【正确答案】(1)批衬衫进了30件,第二批进了15件(2)第二批衬衫每件至少要售170元【详解】试题分析:(1)设批衬衫每件进价是x元,则第二批每件进价是(x-10)元,再根据等量关系:第二批进的件数=×批进的件数可得方程;
(2)设第二批衬衫每件售价y元,由利润=售价-进价,根据这两批衬衫售完后的总利润没有低于1950元,可列没有等式求解.试题解析:(1)设批T恤衫每件进价是x元,则第二批每件进价是(x﹣10)元,根据题意可得:,解得:x=150,经检验x=150是原方程的解,答:批T恤衫每件进价是150元,第二批每件进价是140元,(件),(件),答:批T恤衫进了30件,第二批进了15件;(2)设第二批衬衫每件售价y元,根据题意可得:30×50+15(y﹣140)≥1950,解得:y≥170,答:第二批衬衫每件至少要售170元本题考查分式方程、一元没有等式的应用,关键是根据数量作为等量关系列出方程,根据利润作为没有等关系列出没有等式求解.23.如图,AB为⊙O的直径,C是⊙O上一点,过点C的直线交AB的延长线于点D,AE⊥DC,垂足为E,F是AE与⊙O的交点,AC平分∠BAE(1)求证:DE是⊙O的切线;(2)若AE=6,∠D=30°,求图中阴影部分的面积.【正确答案】(1)证明见解析;(2)阴影部分的面积为.【分析】(1)连接OC,先证明∠OAC=∠OCA,进而得到OC∥AE,于是得到OC⊥CD,进而证明DE是⊙O切线;(2)分别求出△OCD的面积和扇形OBC的面积,利用S阴影=S△COD﹣S扇形OBC即可得到答案.【详解】解:(1)连接OC,∵OA=OC,∴∠OAC=∠OCA,∵AC平分∠BAE,∴∠OAC=∠CAE,∴∠OCA=∠CAE,∴OC∥AE,∴∠OCD=∠E,∵AE⊥DE,∴∠E=90°,∴∠OCD=90°,∴OC⊥CD,∵点C在圆O上,OC为圆O的半径,∴CD是圆O的切线;(2)在Rt△AED中,∵∠D=30°,AE=6,∴AD=2AE=12,在Rt△OCD中,∵∠D=30°,∴DO=2OC=DB+OB=DB+OC,∴DB=OB=OC=AD=4,DO=8,∴CD=∴S△OCD==8,∵∠D=30°,∠OCD=90°,∴∠DOC=60°,∴S扇形OBC=×π×OC2=,∵S阴影=S△COD﹣S扇形OBC∴S阴影=8﹣,∴阴影部分的面积为8﹣.24.甲、乙两人沿同一路线登山,图中线段OC、折线OAB分别是甲、乙两人登山的路程y(米)与登山时间x(分)之间的函数图象.请根据图象所提供的信息,解答如下问题:(1)求甲登山的路程与登山时间之间的函数关系式,并写出自变量x的取值范围;(2)求乙出发后多长时间追上甲?此时乙所走的路程是多少米?【正确答案】(1)y=20x(0≤x≤30);(2)乙出发后10分钟追上甲,此时乙所走的路程是200米.【详解】试题分析:(1)设甲登山的路程y与登山时间x之间的函数解析式为y=kx,根据图象得到点C的坐标,然后利用待定系数法求函数解析式解答;(2)根据图形写出点A、B的坐标,再利用待定系数法求出线段AB的解析式,再与OC的解析式联立求解得到交点的坐标,即为相遇时的点.试题解析:(1)设甲登山的路程y与登山时间x之间的函数解析式为y=kx,∵点C(30,600)在函数y=kx的图象上,∴600=30k,解得k=20,∴y=20x(0≤x≤30);(2)设乙在AB段登山的路程y与登山时间x之间的函数解析式为y=ax+b(8≤x≤20),由图形可知,点A(8,120),B(20,600)所以,,解得,所以,y=40x﹣200,设点D为OC与AB的交点,联立,解得,故乙出发后10分钟追上甲,此时乙所走的路程是200米.考点:函数的应用.25.如图1,△ABC是等腰直角三角形,∠BAC=90°,AB=AC,四边形ADEF是正方形,点B、C分别在边AD、AF上,此时BD=CF,BD⊥CF成立.(1)当△ABC绕点A逆时针旋转θ(0°<θ<90°)时,如图2,BD=CF成立吗?若成立,请证明,若没有成立,请说明理由;(2)当△ABC绕点A逆时针旋转45°时,如图3,延长BD交CF于点H.①求证:BD⊥CF;②当AB=2,AD=3时,求线段DH的长.【正确答案】(1)BD=CF,理由见解析;(2)①证明见解析;②DH=.【分析】(1)、根据旋转图形的性质得出AC=AB,∠CAF=∠BAD=θ,AF=AD,从而得出三角形全等;(2)、①、根据全等得出∠HFN=∠ADN,已知得出∠HFN+∠HNF=90°,从而得出结论;②、连接DF,延长AB,与DF交于点M,根据正方形的性质得出AM=DM,然后根据Rt△MAD的勾股定理得出答案.详解】解:(l)、BD=CF成立.由旋转得:AC=AB,∠CAF=∠BAD=θ;AF=AD,∴△ABD≌△ACF,∴BD=CF.(2)①、由(1)得,△ABD≌△ACF,∴∠HFN=∠ADN,∵∠HNF=∠AND,∠AND+∠AND=90°∴∠HFN+∠HNF=90°,∴∠NHF=90°,∴HD⊥HF,即BD⊥CF.②、如图,连接DF,延长AB,与DF交于点M.∵四边形ADEF是正方形,∴∠MDA=45°,∵∠MAD=45°,∴∠MAD=∠MDA,∠AMD=90°,∴AM=DM∵AD=3在△MAD中,,∴AM=DM=3.∴MB=AM-AB=3-2=1,在△BMD中,,∴∵∠MAD=∠MDA=45°,∴∠AMD=90°,又∠DHF=90°,∠MDB=∠HDF,∴△DMB∽△DHF,∴DM:DH=DB:DF,即解得,DH=.本题考查的是正方形的性质、等腰直角三角形的性质、旋转变换的性质以及相似三角形的判定和性质,掌握旋转角的定义和旋转变换的性质、正确作出辅助性是解题的关键.26.如图,抛物线A(﹣1,0),B(5,0),C(0,)三点.(1)求抛物线的解析式;(2)在抛物线的对称轴上有一点P,使PA+PC的值最小,求点P的坐标;(3)点M为x轴上一动点,在抛物线上是否存在一点N,使以A,C,M,N四点构成的四边形为平行四边形?若存在,求点N的坐标;若没有存在,请说明理由.【正确答案】(1)抛物线的解析式为:.(2)P(2,).(3)存在点N的坐标为(4,),或【分析】本题考查的是二次函数综合题,涉及到用待定系数法求函数与二次函数的解析式、平行四边的判定与性质、全等三角形等知识,在解答(3)时要注意进行分类讨论.(1)设抛物线的解析式为y=ax2+bx+c(a≠0),再把A(﹣1,0),B(5,0),C(0,)三点代入求出a、b、c的值即可;(2)因为点A关于对称轴对称的点B的坐标为(5,0),连接BC交对称轴直线于点P,求出P点坐标即可;(3)分点N在x轴下方或上方两种情况进行讨论.【详解】解:(1)设抛物线的解析式为y=ax2+bx+c(a≠0),∵A(﹣1,0),B(5,0),C(0,)三点在抛物线上,∴,解得.∴抛物线的解析式为:y=x2﹣2x﹣;(2)∵抛物线的解析式为:y=x2﹣2x﹣,∴其对称轴为直线x=﹣=﹣=2,连接BC,如图1所示,∵B(5,0),C(0,)∴设直线BC的解析式为y=kx+b(k≠0),∴,解得,∴直线BC的解析式为y=x﹣,当x=2时,y=1﹣=﹣∴P(2,﹣);(3)存在.如图2所示,①当点N在x轴下方时,∵抛物线的对称轴为直线x=2,C(0,﹣)∴N1(4,﹣);②当点N在x轴上方时,如图2,过点N2作N2D⊥x轴于点D,在△AN2D与△M2CO中,∴△AN2D≌△M2CO(ASA)∴N2D=OC=,即N2点的纵坐标为.∴x2﹣2x﹣=,解得x=2+或x=2﹣,∴N2(2+,),N3(2﹣,)综上所述,符合条件的点N的坐标为N1(4,﹣),N2(2+,)或N3(2﹣,).2022-2023学年贵州省铜仁市中考数学专项突破仿真模拟试题(二模)一、选一选:1.在﹣2、+、﹣3、2、0、4、5、﹣1中,负数有()A.1个 B.2个 C.3个 D.4个2.下列运算正确的是()A.x4+x4=2x8 B.x3•x=x4 C.(x﹣y)2=x2﹣y2 D.(x2)3=x53.下列图形中,是对称图形是()A.B.C.D.4.若x,y值均扩大为原来的2倍,则下列分式的值保持没有变的是()A. B. C. D.5.下列函数(1),(2),(3),(4),(5)中,是函数的有()A.4个 B.3个 C.2个 D.1个6.如图,在正方形ABCD外侧,作等边三角形ADE,AC,BE相交于点F,则∠BFC为()A.75° B.60° C.55° D.45°7.若,则x取值范围是()A.x≤1 B.x≥1 C.x<1 D.x>18.在正方体的表面上画有如图1中所示的粗线,图2是其展开图的示意图,但只在A面上画有粗线,那么将图1中剩余两个面中的粗线画入图2中,画确的是()A. B. C. D.9.在中作边上的高,下列画确的是()A. B.C. D.10.如图,AB∥CD,BP和CP分别平分∠ABC和∠DCB,AD过点P,且与AB垂直.若AD=8,则点P到BC的距离是()A.8 B.6 C.4 D.211.若有理数a,b在数轴上对应的点如图所示,则a、b、-a、-b的大小关系是()A.a<b<-a<-b B.a<-b<b<-a C.-b<a<b<-a D.-a<-b<a<b12.某工厂现在平均每天比原计划多生产50台机器,现在生产600台机器所用的时间与原计划生产450台机器所用的时间相同.若设原计划平均每天生产x台机器,则可列方程为()A.= B.= C.= D.=13.已知一直角三角形的木版,三边的平方和为1800,则斜边长为()A.80 B.30 C.90 D.12014.一元二次方程x2-4x=12的根是()A.x1=2,x2=-6 B.x1=-2,x2=6 C.x1=-2,x2=-6 D.x1=2,x2=615.下列说法中,错误的是()A.两个全等三角形一定是相似形 B.两个等腰三角形一定相似C.两个等边三角形一定相似 D.两个等腰直角三角形一定相似16.如图,点A的坐标为(0,1),点B是x轴正半轴上的一动点,以AB为边作等腰Rt△ABC,使∠BAC=90°,设点B的横坐标为x,设点C的纵坐标为y,能表示y与x的函数关系的图象大致是()A. B. C. D.二、填空题:17.64的立方根是_______.18.分解因式:mn2﹣6mn+9m=_____.19.如图,锐角三角形ABC的边AB,AC上的高线CE和BF相交于点D,请写出图中的两对相似三角形:(用相似符号连接).三、解答题:20.计算:﹣14÷×(﹣)+[(﹣3)2﹣(1﹣23)×2].21.计算:(﹣+1)×+﹣|(﹣1)3|÷.22.已知:如图,△ABC中,AB=AC,BD⊥AC于D,CE⊥AB于E,BD、CE相交于F,连接AF.求证:AF平分∠BAC.23.如图,在△ABC中,AC=DC=DB,∠ACD=100°,求∠B的度数.24.将九年级部分男生掷实心球的成绩进行整理,分成5个小组(x表示成绩,单位:米).A组:5.25≤x<6.25;B组:6.25≤x<7.25;C组:7.25≤x<8.25;D组:8.25≤x<9.25;E组:9.25≤x<10.25,并绘制出扇形统计图和频数分布直方图(没有完整).规定x≥6.25为合格,x≥9.25为.(1)这部分男生有多少人?其中成绩合格有多少人?(2)这部分男生成绩的中位数落在哪一组?扇形统计图中D组对应的圆心角是多少度?(3)要从成绩的学生中,随机选出2人介绍,已知甲、乙两位同学的成绩均为,求他俩至少有1人被选中的概率.25.为发展电信事业,方便用户,电信公司对移动电话采取没有同的收费方式,其中,所使用的“便民卡”与“如意卡”在某市范围内每月(30天)的通话时间x(min)与通话费y(元)的关系如图所示:(1)分别求出通话费y1,y2与通话时间x之间的函数关系式;(2)请帮用户计算,在一个月内使用哪一种卡便宜.26.如图,水库大坝的横断面为四边形ABCD,其中AD∥BC,坝顶BC=10米,坝高20米,斜坡AB的坡度i=1∶2.5,斜坡CD的坡角为30°.(1)求坝底AD的长度(结果到1米);(2)若坝长100米,求建筑这个大坝需要的土石料(参考数据:≈1.414,≈1.732)27.已知:关于x的二次函数y=x2+bx+c点(﹣1,0)和(2,6).(1)求b和c的值.(2)若点A(n,y1),B(n+1,y2),C(n+2,y3)都在这个二次函数的图象上,问是否存在整数n,使?若存在,请求出n;若没有存在,请说明理由.(3)若点P是二次函数图象在y轴左侧部分上的一个动点,将直线y=﹣2x沿y轴向下平移,分别交x轴、y轴于C、D两点,若以CD为直角边的△PCD与△OCD相似,请求出所有符合条件点P的坐标.2022-2023学年贵州省铜仁市中考数学专项突破仿真模拟试题(二模)一、选一选:1.在﹣2、+、﹣3、2、0、4、5、﹣1中,负数有()A.1个 B.2个 C.3个 D.4个【正确答案】C【详解】在﹣2、+、﹣3、2、0、4、5、﹣1中,负数有﹣2、﹣3、﹣1,共3个.故选C.2.下列运算正确的是()A.x4+x4=2x8 B.x3•x=x4 C.(x﹣y)2=x2﹣y2 D.(x2)3=x5【正确答案】B【详解】试题解析:A、合并同类项系数相加字母及指数没有变,故A错误;B、同底数幂的乘法底数没有变指数相加,故B正确;C、差的平方等于平方和减积的二倍,故C错误;D、幂的乘方底数没有变指数相乘,故D错误.故选B.点睛:合并同类项系数相加字母及指数没有变,同底数幂的乘法底数没有变指数相加,差的平方等于平方和减积的二倍,幂的乘方底数没有变指数相乘.3.下列图形中,是对称图形的是()A. B. C. D.【正确答案】D【分析】根据把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做对称图形,这个点叫做对称可得答案.【详解】A、没有是对称图形,故此选项错误;
B、没有是对称图形,故此选项错误;
C、没有是对称图形,故此选项错误;
D、是对称图形,故此选项正确;
故选D.本题考查了对称图形,解题的关键是掌握对称图形的定义.4.若x,y的值均扩大为原来的2倍,则下列分式的值保持没有变的是()A. B. C. D.【正确答案】A【详解】试题解析:根据分式的基本性质,可知若x,y的值均扩大为原来的2倍,A、;B、;C、;D、.故A正确.故选A.5.下列函数(1),(2),(3),(4),(5)中,是函数的有()A.4个 B.3个 C.2个 D.1个【正确答案】B【详解】解:因为函数的一般形式为(其中k,b是常数且k≠0),所以(1)(2)(4)是函数,故选B.本题考查函数的概念,解决本题的关键是熟练掌握函数的概念.6.如图,在正方形ABCD外侧,作等边三角形ADE,AC,BE相交于点F,则∠BFC为()A.75° B.60° C.55° D.45°【正确答案】B【分析】由正方形的性质和等边三角形的性质得出∠BAE=150°,AB=AE,由等腰三角形的性质和内角和得出∠ABE=∠AEB=15°,再运用三角形的外角性质即可得出结果.【详解】解:∵四边形ABCD是正方形,∴∠BAD=90°,AB=AD,∠BAF=45°,∵△ADE是等边三角形,∴∠DAE=60°,AD=AE,∴∠BAE=90°+60°=150°,AB=AE,∴∠ABE=∠AEB=(180°−150°)=15°,∴∠BFC=∠BAF+∠ABE=45°+15°=60°;故选:B.本题考查了正方形的性质、等边三角形的性质、等腰三角形的判定与性质、三角形的外角性质;熟练掌握正方形和等边三角形的性质,并能进行推理计算是解决问题的关键.7.若,则x的取值范围是()A.x≤1 B.x≥1 C.x<1 D.x>1【正确答案】A【详解】∵∴x-1≤0,∴x≤1.故选:A.8.在正方体的表面上画有如图1中所示的粗线,图2是其展开图的示意图,但只在A面上画有粗线,那么将图1中剩余两个面中的粗线画入图2中,画确的是()A B. C. D.【正确答案】A【详解】解:可把A、B、C、D选项折叠,能够复原(1)图的只有A.故选A.9.在中作边上的高,下列画确的是()A. B.C. D.【正确答案】C【分析】作哪一条边上的高,即从所对的顶点向这条边或这条边的延长线作垂线段即可.三角形的高即从三角形的顶点向对边引垂线,顶点和垂足间的线段.【详解】解:过点C作边AB垂线段,即画AB边上的高CD,所以画确的是C选项故选:C.本题考查了本题考查了三角形的高的概念,解题的关键是正确作三角形一边上的高.10.如图,AB∥CD,BP和CP分别平分∠ABC和∠DCB,AD过点P,且与AB垂直.若AD=8,则点P到BC的距离是()A.8 B.6 C.4 D.2【正确答案】C【详解】过点P作PE⊥BC于E,
∵AB∥CD,PA⊥AB,
∴PD⊥CD,
∵BP和CP分别平分∠ABC和∠DCB,
∴PA=PE,PD=PE,
∴PE=PA=PD,
∵PA+PD=AD=8,
∴PA=PD=4,
∴PE=4.
故选:C.11.若有理数a,b在数轴上对应的点如图所示,则a、b、-a、-b的大小关系是()A.a<b<-a<-b B.a<-b<b<-a C.-b<a<b<-a D.-a<-b<a<b【正确答案】B【分析】根据数轴表示数的方法得到,,,然后根据相反数的定义易得,,.【详解】解:,,,.故选.此题考查了有理数的大小比较,能够根据数轴确定数的大小,同时特别注意:两个负数,值大的反而小.12.某工厂现在平均每天比原计划多生产50台机器,现在生产600台机器所用的时间与原计划生产450台机器所用的时间相同.若设原计划平均每天生产x台机器,则可列方程为()A.= B.= C.= D.=【正确答案】C【分析】根据现在生产600台机器的时间与原计划生产450台机器的时间相同,所以可得等量关系为:现在生产600台机器时间=原计划生产450台时间.【详解】解:设原计划每天生产x台机器,则现在可生产(x+50)台.依题意得:=.故选:C.此题主要考查了列分式方程应用,利用本题中“现在平均每天比原计划多生产50台机器”这一个隐含条件,进而得出等式方程是解题关键.13.已知一直角三角形的木版,三边的平方和为1800,则斜边长为()A.80 B.30 C.90 D.120【正确答案】B【分析】设此直角三角形的斜边是c,根据勾股定理及已知没有难求得斜边的长.【详解】设此直角三角形的斜边是c,根据勾股定理知,两条直角边的平方和等于斜边的平方.所以三边的平方和即2c2=1800,c=±30(负值舍去),取c=30.故选B.本题考查勾股定理,解题的关键是掌握勾股定理的运用和计算.14.一元二次方程x2-4x=12的根是()A.x1=2,x2=-6 B.x1=-2,x2=6 C.x1=-2,x2=-6 D.x1=2,x2=6【正确答案】B【分析】方程整理后利用因式分解法求解即可.【详解】解:方程整理得x2﹣4x﹣12=0,分解因式得(x+2)(x﹣6)=0,解得x1=﹣2,x2=6,故选:B.本题考查了解一元二次方程,能够根据方程特点灵活选用没有同的解法是解题关键.15.下列说法中,错误的是()A.两个全等三角形一定是相似形 B.两个等腰三角形一定相似C.两个等边三角形一定相似 D.两个等腰直角三角形一定相似【正确答案】B【分析】根据相似图形的定义,选项中提到的图形,对选项一一分析,选出正确答案.【详解】解:A、两个全等的三角形一定相似,正确;B、两个等腰三角形一定相似,错误,等腰三角形的形状没有一定相同;C、两个等边三角形一定相似;正确,等边三角形形状相同,只是大小没有同;D、两个等腰直角三角形一定相似,正确,等腰直角三角形形状相同,只是大小没有同.故选B.本题考查的是相似形的定义,联系图形,即图形的形状相同,但大小没有一定相同的变换是相似变换.特别注意,本题是选择错误的,一定要看清楚题.16.如图,点A坐标为(0,1),点B是x轴正半轴上的一动点,以AB为边作等腰Rt△ABC,使∠BAC=90°,设点B的横坐标为x,设点C的纵坐标为y,能表示y与x的函数关系的图象大致是()A. B. C. D.【正确答案】A【分析】根据题意作出合适的辅助线,可以先证明△ADC和△AOB的关系,即可建立y与x的函数关系,从而可以得到哪个选项是正确的.【详解】作AD∥x轴,作CD⊥AD于点D,如图所示,由已知可得,OB=x,OA=1,∠AOB=90°,∠BAC=90°,AB=AC,点C纵坐标是y,∵AD∥x轴,∴∠DAO+∠AOD=180°,∴∠DAO=90°,∴∠OAB+∠BAD=∠BAD+∠DAC=90°,∴∠OAB=∠DAC,在△OAB和△DAC中,,∴△OAB≌△DAC(AAS),∴OB=CD,∴CD=x,∵点C到x轴的距离为y,点D到x轴的距离等于点A到x的距离1,∴y=x+1(x>0).考点:动点问题的函数图象二、填空题:17.64的立方根是_______.【正确答案】4【分析】根据立方根的定义即可求解.【详解】解:∵43=64,∴64的立方根是4,故4.此题主要考查立方根的定义,解题的关键是熟知立方根的定义.18.分解因式:mn2﹣6mn+9m=_____.【正确答案】m(n﹣3)2【详解】mn2﹣6mn+9m=m(n2-6n+9)=m(n-3)²19.如图,锐角三角形ABC的边AB,AC上的高线CE和BF相交于点D,请写出图中的两对相似三角形:(用相似符号连接).【正确答案】见解析【详解】∵锐角三角形ABC的边AB和AC上的高线CE和BF相交于点D∴∠AEC=∠BEC=∠AFB=∠CFB=90°∵∠ABF=∠DBE,∠ACE=∠DCF∴△ABF∽△DBE,△ACE∽△DCF∵∠EDB=∠FDC∴△EDB∽△FDC∴△ABF∽△DBE∽△DCF∽△ACE答案没有,如△ABF∽△DBE或△ACE∽△DCF或△EDB∽△FDC等.三、解答题:20.计算:﹣14÷×(﹣)+[(﹣3)2﹣(1﹣23)×2].【正确答案】23.【详解】试题分析:原式先计算乘方运算,再计算乘除运算,算加减运算即可得到结果.试题解析:原式=﹣1××(﹣)+9+14=+23=23.21.计算:(﹣+1)×+﹣|(﹣1)3|÷.【正确答案】0.【详解】试题分析:原式先计算乘方及值运算,再计算乘除运算,算加减运算即可得到结果.试题解析:原式=,=,=0.22.已知:如图,在△ABC中,AB=AC,BD⊥AC于D,CE⊥AB于E,BD、CE相交于F,连接AF.求证:AF平分∠BAC.【正确答案】证明见解析【分析】先根据AB=AC,可得∠ABC=∠ACB,再由垂直,可得90°的角,在△BCE和△BCD中,利用内角和为180°,可分别求∠BCE和∠DBC,利用等量减等量差相等,可得FB=FC,再易证△ABF≌△ACF,从而证出AF平分∠BAC.详解】证明:∵AB=AC(已知),∴∠ABC=∠ACB(等边对等角),∵BD、CE分别是高,∴BD⊥AC,CE⊥AB(高的定义),∴∠CEB=∠BDC=90°,∴∠ECB=90°−∠ABC,∠DBC=90°−∠ACB,∴∠ECB=∠DBC(等量代换),∴FB=FC(等角对等边),在△ABF和△ACF中,,∴△ABF≌△ACF(SSS),∴∠BAF=∠CAF(全等三角形对应角相等),∴AF平分∠BAC.本题主要考查了等腰三角形的性质和判定,全等三角形的判定和性质,熟练掌握等腰三角形的性质和判定,全等三角形的判定和性质是解题的关键.23.如图,在△ABC中,AC=DC=DB,∠ACD=100°,求∠B的度数.【正确答案】∠B=20°【分析】根据等边对等角和三角形的内角和定理,可先求得∠CAD的度数;再根据外角的性质,求∠B的读数.【详解】,,,是的外角,,,.考查等腰三角形的性质,关键是根据三角形外角的性质以及三角形内角和定理解答.24.将九年级部分男生掷实心球的成绩进行整理,分成5个小组(x表示成绩,单位:米).A组:5.25≤x<6.25;B组:6.25≤x<7.25;C组:7.25≤x<8.25;D组:8.25≤x<9.25;E组:9.25≤x<10.25,并绘制出扇形统计图和频数分布直方图(没有完整).规定x≥6.25为合格,x≥9.25为.(1)这部分男生有多少人?其中成绩合格的有多少人?(2)这部分男生成绩的中位数落在哪一组?扇形统计图中D组对应的圆心角是多少度?(3)要从成绩的学生中,随机选出2人介绍,已知甲、乙两位同学的成绩均为,求他俩至少有1人被选中的概率.【正确答案】(1)这部分男生共有50人,合格人数为45人;(2)成绩的中位数落在C组,对应的圆心角为108°;(3)他俩至少有1人被选中的概率为:.【详解】试题分析:(1)根据题意可得:这部分男生共有:5÷10%=50(人);又由只有A组男人成绩没有合格,可得:合格人数为:50-5=45(人);(2)由这50人男生的成绩由低到高分组排序,A组有5人,B组有10人,C组有15人,D组有15人,E组有5人,可得:成绩的中位数落在C组;又由D组有15人,占15÷50=30%,即可求得:对应的圆心角为:360°×30%=108°;(3)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与他俩至少有1人被选中的情况,再利用概率公式即可求得答案.试题解析:(1)∵A组占10%,有5人,∴这部分男生共有:5÷10%=50(人);∵只有A组男人成绩没有合格,∴合格人数为:50-5=45(人);(2)∵C组占30%,共有人数:50×30%=15(人),B组有10人,D组有15人,∴这50人男生的成绩由低
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 个性化家庭出游路线规划
- 全球化背景下的医疗技术出口策略分析
- 2025中国葛洲坝集团市政工程限公司招聘77人高频重点提升(共500题)附带答案详解
- 2025中国移动咪咕公司校园招聘高频重点提升(共500题)附带答案详解
- 2025中国电信山东济宁分公司校园招聘高频重点提升(共500题)附带答案详解
- 2025中国大唐集团海外投资限公司招聘33人高频重点提升(共500题)附带答案详解
- 2025东方电气集团(四川)物产限公司招聘1人高频重点提升(共500题)附带答案详解
- 2025下半年贵州黔西南州贞丰县招聘事业单位工作人员83人高频重点提升(共500题)附带答案详解
- 2025下半年甘肃省市场监督管理局直属事业单位招聘21人历年高频重点提升(共500题)附带答案详解
- 2025下半年浙江省丽水松阳县事业单位赴外地招聘12人历年高频重点提升(共500题)附带答案详解
- 病例报告表(CRF)模板
- 2022年江苏省普通高中学业水平测试生物试卷
- 湖南省长沙市2022-2023学年二年级上学期期末数学试题
- 齐鲁针灸智慧树知到期末考试答案2024年
- 公共体育(三)学习通课后章节答案期末考试题库2023年
- 学校学生评教表
- 塔塔里尼调压器FLBM5介绍.ppt
- 相亲相爱一家人简谱
- CCC例行检验和确认检验程序
- 验收合格证明(共9页)
- 苏强格命名规则
评论
0/150
提交评论