版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每题4分,共48分)1.已知线段c是线段a和b的比例中项,若a=1,b=2,则c=()A.1 B. C. D.2.下列命题正确的个数有()①两边成比例且有一角对应相等的两个三角形相似;②对角线相等的四边形是矩形;③任意四边形的中点四边形是平行四边形;④两个相似多边形的面积比为2:3,则周长比为4:1.A.1个 B.2个 C.3个 D.4个3.如图,边长为1的小正方形构成的网格中,半径为1的⊙O的圆心O在格点上,则∠BED的正切值等于()A. B. C.2 D.4.如图,在⊙中,半径垂直弦于,点在⊙上,,则半径等于()A. B. C. D.5.已知⊙O的半径为5cm,点P在⊙O上,则OP的长为()A.4cm B.5cm C.8cm D.10cm6.如图,在△ABC中,E,G分别是AB,AC上的点,∠AEG=∠C,∠BAC的平分线AD交EG于点F,若,则()A. B. C. D.7.口袋中有2个红球和1个黑球,每次摸到后放回,两次都摸到红球的概率为()A. B. C. D.8.在同一坐标系内,一次函数与二次函数的图象可能是A. B. C. D.9.已知点都在反比例函数的图像上,那么()A. B. C. D.的大小无法确定10.抛物线y=(x-3)2+4的顶点坐标是()A.(-1,2)B.(-1,-2)C.(1,-2)D.(3,4)11.二次函数y=-2(x+1)2+3的图象的顶点坐标是()A.(1,3) B.(-1,3) C.(1,-3) D.(-1,-3)12.如图所示的两个三角形(B、F、C、E四点共线)是中心对称图形,则对称中心是()A.点C B.点DC.线段BC的中点 D.线段FC的中点二、填空题(每题4分,共24分)13.如图,在菱形ABCD中,∠B=60°,AB=2,M为边AB的中点,N为边BC上一动点(不与点B重合),将△BMN沿直线MN折叠,使点B落在点E处,连接DE、CE,当△CDE为等腰三角形时,BN的长为_____.14.已知2是关于x方程x2-2a=0的一个解,则2a-1的值是______________.15.如图,在四边形ABCD中,AD∥BC,AD=2,AB=,以点A为圆心,AD为半径的圆与BC相切于点E,交AB于点F,则弧DF的长为_________.16.已知线段a=4,b=16,则a,b的比例中项线段的长是_______.17.如图,A,B,C是⊙O上三点,∠AOC=∠B,则∠B=_______度.18.函数y=x2﹣4x+3的图象与y轴交点的坐标为_____.三、解答题(共78分)19.(8分)如图,已知抛物线C1交直线y=3于点A(﹣4,3),B(﹣1,3),交y轴于点C(0,6).(1)求C1的解析式.(2)求抛物线C1关于直线y=3的对称抛物线的解析式;设C2交x轴于点D和点E(点D在点E的左边),求点D和点E的坐标.(3)将抛物线C1水平向右平移得到抛物线C3,记平移后点B的对应点B′,若DB平分∠BDE,求抛物线C3的解析式.(4)直接写出抛物线C1关于直线y=n(n为常数)对称的抛物线的解析式.20.(8分)如图1,在矩形ABCD中,点P是BC边上一点,连接AP交对角线BD于点E,.作线段AP的中垂线MN分别交线段DC,DB,AP,AB于点M,G,F,N.(1)求证:;(2)若,求.(3)如图2,在(2)的条件下,连接CF,求的值.21.(8分)在一次社会大课堂的数学实践活动中,王老师要求同学们测量教室窗户边框上的点C到地面的距离即CD的长,小英测量的步骤及测量的数据如下:(1)在地面上选定点A,B,使点A,B,D在同一条直线上,测量出、两点间的距离为9米;(2)在教室窗户边框上的点C点处,分别测得点,的俯角∠ECA=35°,∠ECB=45°.请你根据以上数据计算出的长.(可能用到的参考数据:sin35°≈0.57cos35°≈0.82tan35°≈0.70)22.(10分)如图,四边形是平行四边形,分别是的平分线,且与对角线分别相交于点.(1)求证:;(2)连结,判断四边形是否是平行四边形,说明理由.23.(10分)如图,△ABC中,点E在BC边上,AE=AB,将线段AC绕A点逆时针旋转到AF的位置,使得∠CAF=∠BAE,连接EF,EF与AC交于点G.求证:EF=BC.24.(10分)如图为某海域示意图,其中灯塔D的正东方向有一岛屿C.一艘快艇以每小时20nmile的速度向正东方向航行,到达A处时得灯塔D在东北方向上,继续航行0.3h,到达B处时测得灯塔D在北偏东30°方向上,同时测得岛屿C恰好在B处的东北方向上,此时快艇与岛屿C的距离是多少?(结果精确到1nmile.参考数据:≈1.41,≈1.73,≈2.45)25.(12分)课堂上同学们借助两个直角三角形纸板进行探究,直角三角形纸板如图所示,分别为Rt△ABC和Rt△DEF,其中∠A=∠D=90°,AC=DE=2cm.当边AC与DE重合,且边AB和DF在同一条直线上时:(1)在下边的图形中,画出所有符合题意的图形;(2)求BF的长.26.在一次数学兴趣小组活动中,阳光和乐观两位同学设计了如图所示的两个转盘做游戏(每个转盘被分成面积相等的几个扇形,并在每个扇形区域内标上数字).游戏规则如下:两人分别同时转动甲、乙转盘,转盘停止后,若指针所指区域内两数和小于12,则阳光获胜,反之则乐观获胜(若指针停在等分线上,重转一次,直到指针指向某一份内为止).(1)请用列表或画树状图的方法表示出上述游戏中两数和的所有可能的结果;(2)游戏对双方公平吗?请说明理由.
参考答案一、选择题(每题4分,共48分)1、B【分析】根据线段比例中项的概念,可得a:c=c:b,可得c2=ab=2,故c的值可求,注意线段不能为负.【详解】解:∵线段c是a、b的比例中项,∴c2=ab=2,
解得c=±,
又∵线段是正数,∴c=.
故选:B.【点睛】本题考查了比例中项的概念,注意:求两个数的比例中项的时候,应开平方.求两条线段的比例中项的时候,负数应舍去.2、A【分析】利用相似三角形的判定、矩形的判定方法、平行四边形的判定方法及相似多边形的性质分别判断后即可确定正确的选项.【详解】①两边成比例且夹角对应相等的两个三角形相似,故错误;
②对角线相等的平行四边形是矩形,故错误;
③任意四边形的中点四边形是平行四边形,正确;
④两个相似多边形的面积比2:3,则周长比为:,故错误,
正确的有1个,
故选A.【点睛】本题考查命题与定理,解题的关键是掌握相似三角形的判定、矩形的判定方法、平行四边形的判定方法及相似多边形的性质.3、D【分析】根据同弧或等弧所对的圆周角相等可知∠BED=∠BAD,再结合图形根据正切的定义进行求解即可得.【详解】∵∠DAB=∠DEB,∴tan∠DEB=tan∠DAB=,故选D.【点睛】本题考查了圆周角定理(同弧或等弧所对的圆周角相等)和正切的概念,正确得出相等的角是解题关键.4、B【分析】直接利用垂径定理进而结合圆周角定理得出是等腰直角三角形,进而得出答案.【详解】半径弦于点,,,,是等腰直角三角形,,,则半径.故选:B.【点睛】此题主要考查了勾股定理,垂径定理和圆周角定理,正确得出是等腰直角三角形是解题关键.5、B【分析】根据点与圆的位置关系解决问题即可.【详解】解:∵点P在⊙O上,∴OP=r=5cm,故选:B.【点睛】本题考查了对点与圆的位置关系的判断.关键要记住若半径为r,点到圆心的距离为d,则有:当d>r时,点在圆外;当d=r时,点在圆上,当d<r时,点在圆内.6、C【分析】根据两组对应角相等可判断△AEG∽△ACB,△AEF∽△ACD,再得出线段间的比例关系进行计算即可得出结果.【详解】解:(1)∵∠AEG=∠C,∠EAG=∠BAC,
∴△AEG∽△ACB.
∴.
∵∠EAF=∠CAD,∠AEF=∠C,
∴△AEF∽△ACD.
∴又,∴.∴故选C.【点睛】本题考查了相似三角形的判定,解答本题,要找到两组对应角相等,再利用相似的性质求线段的比值.7、D【分析】根据题意画出树形图即可求出两次都摸到红球的概率,进而得出选项.【详解】解:设红球为1,黑球为2,画树形图得:由树形图可知:两次都摸到红球的概率为.故选:D.【点睛】本题考查用列表法与树状图法求随机事件的概率,列举法(树形图法)求概率的关键在于列举出所有可能的结果,列表法是一种,但当一个事件涉及三个或更多元素时,为不重不漏地列出所有可能的结果,通常采用树形图.8、C【分析】x=0,求出两个函数图象在y轴上相交于同一点,再根据抛物线开口方向向上确定出a>0,然后确定出一次函数图象经过第一三象限,从而得解.【详解】x=0时,两个函数的函数值y=b,
所以,两个函数图象与y轴相交于同一点,故B、D选项错误;
由A、C选项可知,抛物线开口方向向上,
所以,a>0,
所以,一次函数y=ax+b经过第一三象限,
所以,A选项错误,C选项正确.
故选C.9、C【分析】由反比例函数的比例系数为正,那么图象过第一,三象限,根据反比例函数的增减性可得m和n的大小关系.【详解】解:∵点A(m,1)和B(n,3)在反比例函数(k>0)的图象上,
1<3,
∴m>n.
故选:C.【点睛】此题考查了反比例函数图象上点的坐标特征,解决本题的关键是根据反比例函数的比例系数得到函数图象所在的象限,用到的知识点为:k>0,图象的两个分支分布在第一,三象限,在每一个象限内,y随x的增大而减小.10、D【解析】根据抛物线解析式y=(x-3)2+4,可直接写出顶点坐标.【详解】y=(x-3)2+4的顶点坐标是(3,4).故选D.【点睛】此题考查了二次函数y=a(x-h)2+k的性质,对于二次函数y=a(x-h)2+k,顶点坐标是(h,k),对称轴是x=k.11、B【解析】分析:据二次函数的顶点式,可直接得出其顶点坐标;解:∵二次函数的解析式为:y=-(x-1)2+3,∴其图象的顶点坐标是:(1,3);故选A.12、D【分析】直接利用中心对称图形的性质得出答案.【详解】解:两个三角形(B、F、C、E四点共线)是中心对称图形,则对称中心是:线段FC的中点.故选:D.【点睛】本题比较容易,考查识别图形的中心对称性.要注意正确区分轴对称图形和中心对称图形,中心对称是要寻找对称中心,旋转180度后重合.二、填空题(每题4分,共24分)13、或1【分析】分两种情况:①当DE=DC时,连接DM,作DG⊥BC于G,由菱形的性质得出AB=CD=BC=1,AD∥BC,AB∥CD,得出∠DCG=∠B=60°,∠A=110°,DE=AD=1,求出DG=CG=,BG=BC+CG=3,由折叠的性质得EN=BN,EM=BM=AM,∠MEN=∠B=60°,证明△ADM≌△EDM,得出∠A=∠DEM=110°,证出D、E、N三点共线,设BN=EN=xcm,则GN=3-x,DN=x+1,在Rt△DGN中,由勾股定理得出方程,解方程即可;②当CE=CD上,CE=CD=AD,此时点E与A重合,N与点C重合,CE=CD=DE=DA,△CDE是等边三角形,BN=BC=1(含CE=DE这种情况);【详解】解:分两种情况:①当DE=DC时,连接DM,作DG⊥BC于G,如图1所示:∵四边形ABCD是菱形,∴AB=CD=BC=1,AD∥BC,AB∥CD,∴∠DCG=∠B=60°,∠A=110°,∴DE=AD=1,∵DG⊥BC,∴∠CDG=90°﹣60°=30°,∴CG=CD=1,∴DG=CG=,BG=BC+CG=3,∵M为AB的中点,∴AM=BM=1,由折叠的性质得:EN=BN,EM=BM=AM,∠MEN=∠B=60°,在△ADM和△EDM中,,∴△ADM≌△EDM(SSS),∴∠A=∠DEM=110°,∴∠MEN+∠DEM=180°,∴D、E、N三点共线,设BN=EN=x,则GN=3﹣x,DN=x+1,在Rt△DGN中,由勾股定理得:(3﹣x)1+()1=(x+1)1,解得:x=,即BN=,②当CE=CD时,CE=CD=AD,此时点E与A重合,N与点C重合,如图1所示:CE=CD=DE=DA,△CDE是等边三角形,BN=BC=1(含CE=DE这种情况);综上所述,当△CDE为等腰三角形时,线段BN的长为或1;故答案为:或1.【点睛】本题主要考查了折叠变换的性质、菱形的性质、全等三角形的判定与性质、勾股定理,掌握折叠变换的性质、菱形的性质、全等三角形的判定与性质、勾股定理是解题的关键.14、5.【分析】把x=2代入已知方程可以求得2a=6,然后将其整体代入所求的代数式进行解答.【详解】解:∵x=2是关于x的方程x2-2a=0的一个解,∴×22-2a=0,即6-2a=0,则2a=6,∴2a-1=6-1=5.故答案为5..【点睛】本题考查了一元二次方程的解的定义.一元二次方程的根就是一元二次方程的解,就是能够使方程左右两边相等的未知数的值.即用这个数代替未知数所得式子仍然成立.15、【解析】分析:连接AE,根据圆的切线的性质可得AD⊥BC,解Rt△ABE可求出∠ABE,进而得到∠DAB,然后运用弧长的计算公式即可得出答案.详解:连接AE,∵BC为圆A的切线,∴AE⊥BC,∴△ABE为直角三角形,∵AD=2,AB=2,∴AE=2,∴△ABE为等腰直角三角形,∴∠BAE=45°,∵AD∥BC,∴∠DAE=∠AEB=90°,∴∠BAD=45°+90°=135°,∴弧FED的长=π.点睛:本题主要考查的是圆的切线的性质以及弧长的计算公式,属于中等难度题型.得出∠BAD的度数是解题的关键.16、1【分析】设线段a,b的比例中项为c,根据比例中项的定义可得c2=ab,代入数据可直接求出c的值,注意两条线段的比例中项为正数.【详解】解:设线段a,b的比例中项为c,∵c是长度分别为4、16的两条线段的比例中项,∴c2=ab=4×16,∴c2=64,∴c=1或-1(负数舍去),∴a、b的比例中项为1;故答案为:1.【点睛】本题主要考查了比例线段.掌握比例中项的定义,是解题的关键.17、1【分析】连结OB,可知△OAB和△OBC都是等腰三角形,∠ABC=∠A+∠C=∠AOC,四边形内角和360゜,可求∠B.【详解】如图,连结OB,∵OA=OB=OC,∴△OAB和△OBC都是等腰三角形,∴∠A=∠OBA,∠C=∠OBC,∴∠ABC=∠OBA+∠OBC=∠A+∠C,∴∠A+∠C=∠ABC=∠AOC∵∠A+∠ABC+∠C+∠AOC=360゜∴3∠ABC=360゜∴∠ABC=1゜即∠B=1゜.故答案为:1.【点睛】本题考查圆周角度数问题,要抓住半径相等构造两个等腰三角形,把问题转化为解∠B的方程是关键.18、(0,3).【分析】令x=0,求出y的值,然后写出与y轴的交点坐标即可.【详解】解:x=0时,y=3,所以.图象与y轴交点的坐标是(0,3).故答案为(0,3).【点睛】本题考查了求抛物线与坐标轴交点的坐标,掌握二次函数与一元二次方程的联系是解答本题的关键.三、解答题(共78分)19、(1)C1的解析式为y=x2+x+1;(2)抛物线C2的解析式为y=﹣x2﹣x,D(﹣5,0),E(0,0);(3)抛物线C3的解析式为y=;(4)y=x2x+2n﹣1.【分析】(1)设抛物线C1经的解析式为y=ax2+bx+c,将点A、B、C的坐标代入求解即可得到解析式;(2)先求出点C关于直线y=3的对称点的坐标为(0,0),设抛物线C2的解析式为y=a1x2+b1x+c1,即可求出答案;(3)如图,根据平行线的性质及角平分线的性质得到BB′=DB,利用勾股定理求出DB的长度即可得到抛物线平移的距离,由此得到平移后的解析式;(4)设抛物线C1关于直线y=n(n为常数)对称的抛物线的解析式为y=mx+nx+k,根据对称性得到m、n的值,再利用对称性得到新函数与y轴交点坐标得到k的值,由此得到函数解析式.【详解】(1)设抛物线C1经的解析式为y=ax2+bx+c,∵抛物线C1经过点A(﹣4,3),B(﹣1,3),C(0,1).∴,解得,∴C1的解析式为y=x2+x+1;(2)∵C点关于直线y=3的对称点为(0,0),设抛物线C2的解析式为y=a1x2+b1x+c1,∴,解得,∴抛物线C2的解析式为y=﹣x2﹣x;令y=0,则﹣x2﹣x=0,解得x1=0,x2=﹣5,∴D(﹣5,0),E(0,0);(3)如图,∵DB′平分∠BDE,∴∠BDB′=∠ODB′,∵AB∥x轴,∴∠BB′D=∠ODB′,∴∠BDB′=∠BB′D,∴BB′=DB,∵BD==5,∴将抛物线C1水平向右平移5个单位得到抛物线C3,∵C1的解析式为y=x2+x+1=(x+)2+,∴抛物线C3的解析式为y=(x+﹣5)2+=;(4)设抛物线C1关于直线y=n(n为常数)对称的抛物线的解析式为y=mx+nx+k,根据对称性得:新抛物线的开口方向与原抛物线的开口方向相反,开口大小相同,故m=-,对称轴没有变化,故n=-,当n>1时,n+(n-1)=2n-1,故新抛物线与y轴的交点为(0,2n-1),当n<1时,n-(1-n)=2n-1,新抛物线与y轴的交点为(0,2n-1),∴k=2n-1,∴抛物线C1关于直线y=n(n为常数)对称的抛物线的解析式为:y=﹣x2﹣x+2n﹣1.【点睛】此题考查待定系数法求抛物线的解析式,抛物线的对称性,抛物线平移的性质,解题中确定变化后的抛物线的特殊点的坐标是解题的关键.20、(1)见解析;(2);(3)【分析】(1)由等角对等边可得,再由对顶角相等推出,然后利用等角的余角相等即可得证;(2)在中,利用勾股定理可求出BD=10,然后由等角对等边得到,进而求出BP=2,再利用推出,由垂直平分线推出,即可得到的值;(3)连接CG,先由勾股定理求出,由(2)的条件可推出BE=DG,再证明△ABE≌△CDG,从而求出,并推出,最后在中,即可求出的值.【详解】(1)证明:,∵MN⊥AP∴∠GFE=90°∴∠BGN+∠GEF=90°又(2)在矩形ABCD中,∴在中,又∵在矩形ABCD中,∴∵MN垂直平分AP(3)如图,连接CG,在中,在中,又∵在矩形ABCD中,在△ABE和△CDG中,∵AB=DC,∠ABE=∠CDG,BE=DG∴在中,【点睛】本题考查了矩形的性质和等腰三角形的性质,全等三角形,相似三角形的判定和性质,以及三角函数,熟练掌握矩形的性质推出相似三角形与全等三角形是解题的关键.21、CD的长为21米【解析】试题分析:首先分析图形:本题涉及到两个直角三角形△DBC、△ADC,设公共边CD=x,利用锐角三角函数表示出AD和DB的长,借助AB=AD-DB=9构造方程关系式,进而可求出答案解:由题意可知:CD⊥AD于D,∠ECB=∠CBD=,∠ECA=∠CAD=,AB=9.设,∵在中,∠CDB=90°,∠CBD=45°,∴CD=BD=.∵在中,∠CDA=90°,∠CAD=35°,∴,∴∵AB=9,AD=AB+BD,∴.解得答:CD的长为21米22、(1)见解析;(2)是平行四边形;理由见解析.【分析】(1)根据角平分线的性质先得出∠BEC=∠DFA,然后再证∠ACB=∠CAD,再证出△ABE≌△CDF,从而得出AE=CF;
(2)连接BD交AC于O,则可知OB=OD,OA=OC,又AE=CF,所以OE=OF,然后依据对角线互相平分的四边形是平行四边形即可证明.【详解】(1)证明:四边形是平行四边形,,分别是的平分线,,∴,∴(2)是平行四边形;连接交于,四边形是平行四边形,,.即四边形为平行四边形(对角线互相平分的四边形是平行四边形).【点睛】本题考查了平行四边形的性质,全等三角形的判定和性质,解答本题的关键寻找两条线段所在的三角形,然后证明两三角形全等.23、见解析【分析】由旋转前后图形全等的性质可得AC=AF,由“SAS”可证△ABC≌△AEF,可得EF=BC.【详解】证明:∵∠CAF=∠BAE,∴∠BAC=∠EAF,∵将线段AC绕A点旋转到AF的位置,∴AC=AF,在△ABC与△AEF中,,∴△ABC≌△AEF(SAS),∴EF=BC;【点睛】本题主要考查的是旋转前后图形全等的性质以及全等三角形的判定,掌握全等三角形的判定是解题的关键.24、此时快艇与岛屿C的距离是20nmile.【分析】过点D作DE⊥AB于点E,过点C作CF⊥AB于点F,由DE∥CF,DC∥EF,∠CFE=90°可得出四边形CDEF为矩形,设DE=xnmile,则AE=x(nmile),BE=x(nmile),由AB=6nmile,可得出关于x的一元一次方程,解之即可得出x的值,再在Rt△CBF中,通过解直角三角形可求出BC的长.【详解】解:过点D作DE⊥AB于点E,过点C作CF⊥AB于点F,如图所示.则DE∥CF,∠DEA=∠CFA=90°
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 参与家乡文化建设建议书范文(7篇)
- 体育会展业的供应链优化研究-洞察分析
- 微生物污染控制-第1篇-洞察分析
- 元宇宙艺术创作研究-洞察分析
- 游戏设计专业课程改革探索-洞察分析
- 虚拟现实技术在木材加工工艺分析中的应用-洞察分析
- 糖尿病视网膜病变基因治疗-洞察分析
- 药物相互作用分析-洞察分析
- 水电安装行业政策影响-洞察分析
- 勤俭节约国旗下讲话稿400字(13篇)
- 2024年河南省中职对口升学高考语文试题真题(解析版)
- 《食品行业ERP应用》课件
- 41-降低悬挑式卸料平台安全隐患发生率 枣庄华厦(4:3定稿)
- 西安交通大学《临床流行病学》2023-2024学年第一学期期末试卷
- 2024年中考语文试题分类汇编:基础知识综合(教师版)
- 广告色彩与视觉传达考核试卷
- 2024-2025学年人教版高一上册物理必修一知识清单
- 2023年不动产登记代理人《不动产登记法律制度政策》考前通关必练题库(含答案)
- GB/T 36547-2024电化学储能电站接入电网技术规定
- 品牌合作经营合同
- 2024文旅景区新春潮趣游园会龙腾中国年主题集五福活动策划方案
评论
0/150
提交评论