版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.关于的一元二次方程有实数根,则的取值范围是()A. B.且 C. D.且2.如图,已知△ABC和△EDC是以点C为位似中心的位似图形,且△ABC和△EDC的周长之比为1:2,点C的坐标为(﹣2,0),若点B的坐标为(﹣5,1),则点D的坐标为()A.(4,﹣2) B.(6,﹣2) C.(8,﹣2) D.(10,﹣2)3.已知菱形的周长为40cm,两对角线长度比为3:4,则对角线长分别为()A.12cm.16cm B.6cm,8cm C.3cm,4cm D.24cm,32cm4.关于反比例函数y=,下列说法中错误的是()A.它的图象是双曲线B.它的图象在第一、三象限C.y的值随x的值增大而减小D.若点(a,b)在它的图象上,则点(b,a)也在它的图象上5.在反比例函数的图象中,阴影部分的面积不等于4的是()A. B. C. D.6.学校门口的栏杆如图所示,栏杆从水平位置绕点旋转到位置,已知,,垂足分别为,,,,,则栏杆端应下降的垂直距离为()A. B. C. D.7.在做针尖落地的实验中,正确的是()A.甲做了4000次,得出针尖触地的机会约为46%,于是他断定在做第4001次时,针尖肯定不会触地B.乙认为一次一次做,速度太慢,他拿来了大把材料、形状及大小都完全一样的图钉,随意朝上轻轻抛出,然后统计针尖触地的次数,这样大大提高了速度C.老师安排每位同学回家做实验,图钉自由选取D.老师安排同学回家做实验,图钉统一发(完全一样的图钉).同学交来的结果,老师挑选他满意的进行统计,他不满意的就不要8.关于x的一元二次方程x2+8x+q=0有两个不相等的实数根,则q的取值范围是()A.q<16 B.q>16C.q≤4 D.q≥49.如图,将命题“在同圆中,相等的圆心角所对的弧相等,所对的弦也相等”改写成“已知……求证……”的形式,下列正确的是()A.已知:在⊙O中,∠AOB=∠COD,弧AB=弧CD.求证:AB=CDB.已知:在⊙O中,∠AOB=∠COD,弧AB=弧BC.求证:AD=BCC.已知:在⊙O中,∠AOB=∠COD.求证:弧AD=弧BC,AD=BCD.已知:在⊙O中,∠AOB=∠COD.求证:弧AB=弧CD,AB=CD10.如图,在中,点D为AC边上一点,则CD的长为()A.1 B. C.2 D.11.下列不是一元二次方程的是()A. B. C. D.12.如图,在⊙O中,弦BC//OA,AC与OB相交于点M,∠C=20°,则∠MBC的度数为().A.30° B.40°C.50° D.60°二、填空题(每题4分,共24分)13.已知△ABC与△DEF是两个位似图形,它们的位似比为,若,那么________14.当______时,关于的方程有实数根.15.已知某种礼炮的升空高度h(m)与飞行时间t(s)的关系是h=+20t+1,若此礼炮在升空到最高处时引爆,到引爆需要的时间为_____s.16.如图,有一斜坡,坡顶离地面的高度为,斜坡的倾斜角是,若,则此斜坡的为____m.17.若关于x的方程x2+3x+a=0有一个根为﹣1,则另一个根为________.18.已知关于x的一元二次方程ax2+bx+5a=0有两个正的相等的实数根,则这两个相等实数根的和为_____.三、解答题(共78分)19.(8分)为了落实国务院的指示精神,地方政府出台了一系列“三农”优惠政策,使农民收入大幅度增加.某农户生产经销一种农产品,已知这种产品的成本价为每千克20元,市场调查发现,该产品每天的销售量y(千克)与销售价x(元/千克)有如下关系:.设这种产品每天的销售利润为w元.(1)求w与x之间的函数关系式;(2)该产品销售价定为每千克多少元时,每天的销售利润最大?最大利润是多少元?20.(8分)如图,已知的三个顶点坐标为,,.(1)将绕坐标原点旋转,画出旋转后的,并写出点的对应点的坐标;(2)将绕坐标原点逆时针旋转,直接写出点的对应点Q的坐标;(3)请直接写出:以、、为顶点的平行四边形的第四个顶点的坐标.21.(8分)如图,为的直径,、为上两点,,,垂足为.直线交的延长线于点,连接.(1)判断与的位置关系,并说明理由;(2)求证:.22.(10分)已知正方形ABCD,P为射线AB上的一点,以BP为边作正方形BPEF,使点F在线段CB的延长线上,连接EA、EC(1)如图1,若点P在线段AB的延长线上,求证:EA=EC;(2)若点P在线段AB上.①如图2,连接AC,当P为AB的中点时,判断△ACE的形状,并说明理由;②如图3,设AB=a,BP=b,当EP平分∠AEC时,求a:b及∠AEC的度数.23.(10分)取什么值时,关于的方程有两个相等的实数根?求出这时方程的根.24.(10分)如图,点D,E分别是不等边△ABC(即AB,BC,AC互不相等)的边AB,AC的中点.点O是△ABC所在平面上的动点,连接OB,OC,点G,F分别是OB,OC的中点,顺次连接点D,G,F,E.(1)如图,当点O在△ABC的内部时,求证:四边形DGFE是平行四边形;(2)若四边形DGFE是菱形,则OA与BC应满足怎样的数量关系?(直接写出答案,不需要说明理由)25.(12分)用配方法解方程:x2﹣6x=1.26.如图,中,,,为内部一点,且.(1)求证:;(2)求证:;(3)若点到三角形的边,,的距离分别为,,,求证.
参考答案一、选择题(每题4分,共48分)1、B【分析】判断上述方程的根的情况,只要看根的判别式△=b2-4ac的值的符号就可以了.关于x的一元二次方程kx2+3x-1=1有实数根,则△=b2-4ac≥1.【详解】解:∵a=k,b=3,c=-1,
∴△=b2-4ac=32+4×k×1=9+4k≥1,,
∵k是二次项系数不能为1,k≠1,
即且k≠1.
故选:B.【点睛】本题考查了一元二次方程根的判别式的应用.切记不要忽略一元二次方程二次项系数不为零这一隐含条件.2、A【分析】作BG⊥x轴于点G,DH⊥x轴于点H,根据位似图形的概念得到△ABC∽△EDC,根据相似是三角形的性质计算即可.【详解】作BG⊥x轴于点G,DH⊥x轴于点H,则BG∥DH,∵△ABC和△EDC是以点C为位似中心的位似图形,∴△ABC∽△EDC,∵△ABC和△EDC的周长之比为1:2,∴=,由题意得,CG=3,BG=1,∵BG∥DH,∴△BCG∽△DCH,∴===,即==,解得,CH=6,DH=2,∴OH=CH﹣OC=4,则点D的坐标为为(4,﹣2),故选:A.【点睛】本题考查的是位似变换的性质,正确理解位似与相似的关系,记忆关于原点位似的两个图形对应点坐标之间的关系是解题的关键.3、A【解析】试题分析:如图,四边形ABCD是菱形,且菱形的周长为40cm,设故选A.考点:1、菱形的性质;2、勾股定理.4、C【分析】根据反比例函数y=的图象上点的坐标特征,以及该函数的图象的性质进行分析、解答.【详解】A.反比例函数的图像是双曲线,正确;B.k=2>0,图象位于一、三象限,正确;C.在每一象限内,y的值随x的增大而减小,错误;D.∵ab=ba,∴若点(a,b)在它的图像上,则点(b,a)也在它的图像上,故正确.故选C.【点睛】本题主要考查反比例函数的性质.注意:反比例函数的增减性只指在同一象限内.5、B【分析】根据反比例函数中k的几何意义,过双曲线上任意一点引x轴、y轴垂线,所得矩形面积为|k|解答即可.【详解】解:A、图形面积为|k|=1;B、阴影是梯形,面积为6;C、D面积均为两个三角形面积之和,为2×(|k|)=1.故选B.【点睛】主要考查了反比例函数中k的几何意义,即过双曲线上任意一点引x轴、y轴垂线,所得矩形面积为|k|,是经常考查的一个知识点;这里体现了数形结合的思想,做此类题一定要正确理解k的几何意义.图象上的点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S的关系即S=|k|.6、C【解析】分析:根据题意得△AOB∽△COD,根据相似三角形的性质可求出CD的长.详解:∵,,∴∠ABO=∠CDO,∵∠AOB=∠COD,∴△AOB∽△COD,∴∵AO=4m,AB=1.6m,CO=1m,∴.故选C.点睛:本题考查了相似三角形的判定与性质,正确得出△AOB∽△COD是解题关键.7、B【解析】试题分析:根据模拟实验带有一定的偶然性,相应的条件性得到正确选项即可.A、在做第4001次时,针尖可能触地,也可能不触地,故错误,不符合题意;B、符合模拟实验的条件,正确,符合题意;C、应选择相同的图钉,在类似的条件下实验,故错误,不符合题意;D、所有的实验结果都是有可能发生,也有可能不发生的,故错误,不符合题意;故选B.考点:本题考查的是模拟实验的条件点评:解答本题的关键是注意实验器具和实验环境应相同,实验的结果带有一定的偶然性.8、A【解析】∵关于x的一元二次方程x2+8x+q=0有两个不相等的实数根,∴△>0,即82-4q>0,∴q<16,故选A.9、D【分析】根据命题的概念把原命题写成:“如果...求证...”的形式.【详解】解:“在同圆中,相等的圆心角所对的弧相等,所对的弦也相等”,改写成:已知:在⊙O中,∠AOB=∠COD.求证:弧AB=弧CD,AB=CD故选:D【点睛】本题考查命题,掌握将命题改写为“如果...求证...”的形式,是解题的关键.10、C【解析】根据∠DBC=∠A,∠C=∠C,判定△BCD∽△ACB,根据相似三角形对应边的比相等得到代入求值即可.【详解】∵∠DBC=∠A,∠C=∠C,∴△BCD∽△ACB,∴∴∴CD=2.故选:C.【点睛】主要考查相似三角形的判定与性质,掌握相似三角形的判定定理是解题的关键.11、C【分析】本题根据一元二次方程的定义解答.一元二次方程必须满足四个条件:(1)是整式方程;(2)含有一个未知数;(3)未知数的最高次数是2;(4)二次项系数不为1.由这四个条件对四个选项进行验证,满足这四个条件者为正确答案.【详解】解:、正确,符合一元二次方程的定义;、正确,符合一元二次方程的定义;、错误,整理后不含未知数,不是方程;、正确,符合一元二次方程的定义.故选:C.【点睛】本题考查了一元二次方程的概念,判断一个方程是否是一元二次方程,首先要看是否是整式方程,然后看化简后是否是只含有一个未知数且未知数的最高次数是2.12、B【分析】由圆周角定理(同弧所对的圆周角是圆心角的一半)得到∠AOB,再由平行得∠MBC.【详解】解:∵∠C=20°
∴∠AOB=40°
又∵弦BC∥半径OA
∴∠MBC=∠AOB=40°,故选:B.【点睛】熟练掌握圆周角定理,平行线的性质是解答此题的关键.二、填空题(每题4分,共24分)13、1【分析】由题意直接利用位似图形的性质,进行分析计算即可得出答案.【详解】解:∵△ABC与△DEF是两个位似图形,它们的位似比为,∴△DEF的面积是△ABC的面积的4倍,∵S△ABC=10,∴S△DEF=1.故答案为:1.【点睛】本题主要考查位似变换,熟练掌握位似图形的面积比是位似比的平方比是解题的关键.14、【分析】根据题意分关于的方程为一元一次方程和一元二次方程进行分析计算.【详解】解:①当关于的方程为一元一次方程时,有,解得,又因为时,方程无解,所以;②当关于的方程为一元二次方程时,根据题意有,解得;综上所述可知:.故答案为:.【点睛】本题考查一元二次方程根的判别式,解答此题时要注意关于的方程为一元一次方程的情况.15、1【分析】将关系式h=t2+20t+1转化为顶点式就可以直接求出结论.【详解】解:∵h=t2+20t+1=(t﹣1)2+11,∴当t=1时,h取得最大值,即礼炮从升空到引爆需要的时间为1s,故答案为:1.【点睛】本题考查了二次函数的性质顶点式的运用,解答时将一般式化为顶点式是关键.16、1.【分析】由三角函数定义即可得出答案.【详解】解:∵,,∴;故答案为:1.【点睛】本题考查了解直角三角形的应用;熟练掌握三角函数定义是解题的关键.17、-2【解析】试题解析:由韦达定理可得,故答案为18、2【分析】根据根的判别式,令,可得,解方程求出b=﹣2a,再把b代入原方程,根据韦达定理:即可.【详解】当关于x的一元二次方程ax2+bx+5a=0有两个正的相等的实数根时,,即,解得b=﹣2a或b=2a(舍去),原方程可化为ax2﹣2ax+5a=0,则这两个相等实数根的和为.故答案为:2.【点睛】本题考查一元二次方程根的判别式和韦达定理,解题的关键是熟练掌握根的判别式和韦达定理。三、解答题(共78分)19、(1);(2)该产品销售价定为每千克30元时,每天销售利润最大,最大销售利润200元.【解析】试题分析:(1)根据销售额=销售量×销售价单x,列出函数关系式;(2)用配方法将(2)的函数关系式变形,利用二次函数的性质求最大值.试题解析:(1)由题意得:,∴w与x的函数关系式为:.(2),∵﹣2<0,∴当x=30时,w有最大值.w最大值为200.答:该产品销售价定为每千克30元时,每天销售利润最大,最大销售利润200元.考点:1.二次函数的应用;2.由实际问题列函数关系式;3.二次函数的最值.20、(1);(2);(3)或或.【解析】(1)根据题意作出图形,即可根据直角坐标系求出坐标;(2)根据题意作出图形,即可根据直角坐标系求出坐标;(3)根据平行四边形的性质作出图形即可写出.【详解】解:(1)旋转后的图形如图所示,点的对应点Q的坐标为:;(2)如图点的对应点的坐标;(3)如图以、、为顶点的平行四边形的第四个顶点的坐标为:或或【点睛】此题主要考查坐标与图形,解题的关键是熟知图形的旋转作图及平行四边形的性质.21、(1)EF与⊙O相切,理由见解析;(2)证明见解析.【分析】(1)连接OC,由题意可得∠OCA=∠FAC=∠OAC,可得OC∥AF,可得OC⊥EF,即EF是⊙O的切线;(2)连接BC,根据直径所对圆周角是直角证得△ACF∽△ABC,即可证得结论.【详解】(1)EF与⊙O相切,理由如下:如图,连接OC,∵,∴∠FAC=∠BAC,∵OC=OA,∴∠OCA=∠OAC,∴∠OCA=∠FAC,∴OC∥AF,又∵EF⊥AF,∴OC⊥EF,∴EF是⊙O的切线;(2)连接BC,∵AB为直径,∴∠BCA=90°,又∵∠FAC=∠BAC,∴△ACF∽△ABC,∴,∴.【点睛】本题考查了直线与圆的位置关系,切线的判定和性质,圆周角定理,相似三角形的判定和性质,熟练运用切线的判定和性质是本题的关键.22、(1)详见解析;(2)△ACE为直角三角形,理由见解析;(3)∠AEC=45°.【解析】试题分析:(1)根据正方形的性质和全等三角形的判定定理易证△APE≌△CFE,由全等三角形的性质即可得结论;(2)①根据正方形的性质、等腰直角三角形的性质即可判定△ACE为直角三角形;②根据PE∥CF,得到,代入a、b的值计算求出a:b,根据角平分线的判定定理得到∠HCG=∠BCG,证明∠AEC=∠ACB,即可求出∠AEC的度数.试题解析:(1)证明:∵四边形ABCD为正方形∴AB=AC∵四边形BPEF为正方形∴∠P=∠F=90°,PE=EF=FB=BP∵AP=AB+BP,CF=BC+BF∴CF=AP在△APE和△CFE中:EP="EF,"∠P="∠F=90°,"AP=CF∴△APE≌△CFE∴EA=EC(2)①∵P为AB的中点,∴PA=PB,又PB=PE,∴PA=PE,∴∠PAE=45°,又∠DAC=45°,∴∠CAE=90°,即△ACE是直角三角形;②∵EP平分∠AEC,EP⊥AG,∴AP=PG=a﹣b,BG=a﹣(2a﹣2b)=2b﹣a∵PE∥CF,∴,即,解得,a=b;作GH⊥AC于H,∵∠CAB=45°,∴HG=AG=×(2b﹣2b)=(2﹣)b,又BG=2b﹣a=(2﹣)b,∴GH=GB,GH⊥AC,GB⊥BC,∴∠HCG=∠BCG,∵PE∥CF,∴∠PEG=∠BCG,∴∠AEC=∠ACB=45°.∴a:b=:1;∴∠AEC=45°.考点:四边形综合题.23、k=2或10时,当k=2时,x1=x2=,当k=10时,x1=x2=【分析】根据题意,得判别式△=[-(k+2)]2-4×4×(k-1)=0,解此一元二次方程即可求得k的值;然后代入k,利用直接开平方法,即可求得这时方程的根.【详解】解:∵关于x的方程4x2-(k+2)x+k-1=0有两个相等的实数根,∴△=[-(k+2)]2-4×4×(k-1)=k2-12k+20=0,解得:k1=2,k2=10∴k=2或10时,关于x的方程4x2-(k+2)x+k-1=0有两个相等的实数根.当k=2时,原方程为:4x2-4x+1=0,即(2x-1)2=0,解得:x1=x2=;当k=10时,原方程为:4x2-12x+9=0,即(2x-3)2=0,解得:x1=x2=;【点睛】此题考查了一元二次方程根的判别式与一元二次方程的解法.此题难度不大,解题的关键是掌握一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《消防器材使用方法》课件
- 小学一年级20以内的进位加法口算练习题
- 小学五年级数学下册第五单元《分数混合运算》测试题
- 金融工程试题及答案
- 计算机组装与维护第五版课后习题参考答案(工业)
- 2020年计算机软考《信息系统项目管理师》基础练习及答案
- 小学数学二年级整十整百整千数加减法口算练习990道
- 高三写作点悟
- 《神经系统的认识》课件
- 《化工开放设计》课件
- 最全-房屋市政工程安全生产标准化指导图册
- 风险预测分析及风险与机遇评估分析表
- 高中日语宣讲 试听课件
- 压力弹簧力度计算器及计算公式
- 新生儿窒息诊断地专家共识
- 2023年重庆市旅游业统计公报要点
- 器械清洗的资料
- 路立得4.1roadleaderv3.0说明书Roadleader是鸿业研制的BIM系列软件之一旨在
- 陕西省教育科学规划课题开题报告
- 三大构成之立体构成-课件
- 河南高职单招政策解读与报名课件
评论
0/150
提交评论