版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每小题3分,共30分)1.如图,该几何体的主视图是()A. B. C. D.2.要制作两个形状相同的三角形框架,其中一个三角形的三边长分别为,和,另一个三角形的最短边长为2.5cm,则它的最长边为()A.3cm B.4cm C.4.5cm D.5cm3.边长分别为6,8,10的三角形的内切圆半径与外接圆半径的比为()A.1:5 B.4:5 C.2:10 D.2:54.已知x1,x2是一元二次方程的两根,则x1+x2的值是()A.0 B.2 C.-2 D.45.如图,在平面直角坐标中,正方形ABCD与正方形BEFG是以原点O为位似中心的位似图形,且相似比为,点A,B,E在x轴上,若正方形BEFG的边长为12,则C点坐标为()A.(6,4) B.(6,2) C.(4,4) D.(8,4)6.一个不透明的袋子中装有10个只有颜色不同的小球,其中2个红球,3个黄球,5个绿球,从袋子中任意摸出一个球,则摸出的球是绿球的概率为()A. B. C. D.7.如果反比例函数y=kx的图像经过点(-3,-A.第一、二象限 B.第一、三象限C.第二、四象限 D.第三、四象限8.如图,AB是⊙O的直径,点C,D在直径AB一侧的圆上(异于A,B两点),点E在直径AB另一侧的圆上,若∠E=42°,∠A=60°,则∠B=()A.62° B.70° C.72° D.74°9.已知OA=5cm,以O为圆心,r为半径作⊙O.若点A在⊙O内,则r的值可以是()A.3cm B.4cm C.5cm D.6cm10.下列方程中是关于x的一元二次方程的是()A.x2+=0 B.y2﹣3x+2=0C.x2=5x D.x2﹣4=(x+1)2二、填空题(每小题3分,共24分)11.如图,将二次函数y=(x-2)2+1的图像沿y轴向上平移得到一条新的二次函数图像,其中A(1,m),B(4,n)平移后对应点分别是A′、B′,若曲线AB所扫过的面积为12(图中阴影部分),则新的二次函数对应的函数表达是__________________.12.已知三个边长分别为2,3,5的正方形如图排列,则图中阴影部分的面积为_____.13.如图,已知正方形ABCD的边长为1,点M是BC边上的动点(不与B,C重合),点N是AM的中点,过点N作EF⊥AM,分别交AB,BD,CD于点E,K,F,设BM=x.(1)AE的长为______(用含x的代数式表示);(2)设EK=2KF,则的值为______.14.如图,在△ABC中,AB=3,AC=4,BC=6,D是BC上一点,CD=2,过点D的直线l将△ABC分成两部分,使其所分成的三角形与△ABC相似,若直线l与△ABC另一边的交点为点P,则DP=________.15.若关于x的方程为一元二次方程,则m=__________.16.如图,在▱ABCD中,AB=6,BC=6,∠D=30°,点E是AB边的中点,点F是BC边上一动点,将△BEF移沿直线EF折叠,得到△GEF,当FG∥AC时,BF的长为_____.17.在每个小正方形的边长为1的网格图形中,每个小正方形的顶点称为格点.以顶点都是格点的正方形ABCD的边为斜边,向内作四个全等的直角三角形,使四个直角顶点E,F,G,H都是格点,且四边形EFGH为正方形,我们把这样的图形称为格点弦图.例如,在如图1所示的格点弦图中,正方形ABCD的边长为,此时正方形EFGH的而积为1.问:当格点弦图中的正方形ABCD的边长为时,正方形EFGH的面积的所有可能值是_____(不包括1).18.如果函数是关于的二次函数,则__________.三、解答题(共66分)19.(10分)在一个不透明的口袋里,装有若干个完全相同的A、B、C三种球,其中A球x个,B球x个,C球(x+1)个.若从中任意摸出一个球是A球的概率为0.1.(1)这个袋中A、B、C三种球各多少个?(2)若小明从口袋中随机模出1个球后不放回,再随机摸出1个.请你用画树状图的方法求小明摸到1个A球和1个C球的概率.20.(6分)为了测量竖直旗杆的高度,某数学兴趣小组在地面上的点处竖直放了一根标杆,并在地面上放置一块平面镜,已知旗杆底端点、点、点在同一条直线上.该兴趣小组在标杆顶端点恰好通过平面镜观测到旗杆顶点,在点观测旗杆顶点的仰角为.观测点的俯角为,已知标杆的长度为米,问旗杆的高度为多少米?(结果保留根号)21.(6分)如图,在矩形ABCD中,AB=3,BC=4,点E是线段AC上的一个动点且=k(0<k<1),点F在线段BC上,且DEFH为矩形;过点E作MN⊥BC,分别交AD,BC于点M,N.(1)求证:△MED∽△NFE;(2)当EF=FC时,求k的值.(3)当矩形EFHD的面积最小时,求k的值,并求出矩形EFHD面积的最小值.22.(8分)某校为了提升初中学生学习数学的兴趣,培养学生的创新精神,举办“玩转数学”比赛,现有甲、乙、丙三个小组进入决赛,评委从研究报告、小组展示、答辩三个方面为各小组打分,各项成绩均按百分制记录,甲、乙、丙三个小组各项得分如下表:小组
研究报告
小组展示
答辩
甲
91
80
78
乙
81
74
85
丙
79
83
90
(1)计算各小组的平均成绩,并从高分到低分确定小组的排名顺序:(2)如果按照研究报告占40%,小组展示占30%,答辩占30%,计算各小组的成绩,哪个小组的成绩最高?23.(8分)如图,直线与轴交于点,与轴交于点,抛物线经过点,.(1)求点B的坐标和抛物线的解析式;(2)M(m,0)为x轴上一个动点,过点M垂直于x轴的直线与直线AB和抛物线分别交于点P、N,①点在线段上运动,若以,,为顶点的三角形与相似,求点的坐标;②点在轴上自由运动,若三个点,,中恰有一点是其它两点所连线段的中点(三点重合除外),则称,,三点为“共谐点”.请直接写出使得,,三点成为“共谐点”的的值.24.(8分)某学校在倡导学生大课间活动中,随机抽取了部分学生对“我最喜爱课间活动”进行了一次抽样调查,分别从打篮球、踢足球、自由活动、跳绳、其它等5个方面进行问卷调(每人只能选一项),根据调查结果绘制了如图的不完整统计图,请你根据图中信息,解答下列问题.(1)本次调查共抽取了学生人;(2)求本次调查中喜欢踢足球人数;(3)若甲、乙两位同学通过抽签的方式确定自己填报的课间活动,则两位同学抽到同一运动的概率是多少?25.(10分)如图,在中,,是的外接圆,连结OA、OB、OC,延长BO与AC交于点D,与交于点F,延长BA到点G,使得,连接FG.备用图(1)求证:FG是的切线;(2)若的半径为4.①当,求AD的长度;②当是直角三角形时,求的面积.26.(10分)在一个不透明的袋子中,装有除颜色外都完全相同的4个红球和若干个黄球.如果从袋中任意摸出一个球是红球的概率为,那么袋中有黄球多少个?在的条件下如果从袋中摸出一个球记下颜色后放回,再摸出一个球,用列表或画树状图的方法求出两次摸出不同颜色球的概率.
参考答案一、选择题(每小题3分,共30分)1、C【解析】找到从正面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中.【详解】解:从正面看易得是1个大正方形,大正方形左上角有个小正方形.故答案选:C.【点睛】本题主要考查了三视图的知识,主视图是从物体的正面看得到的视图,难度适中.2、C【解析】根据相似三角形三边对应成比例进行求解即可得.【详解】设另一个三角形的最长边为xcm,由题意得5:2.5=9:x,解得:x=4.5,故选C.【点睛】本题考查了相似三角形的性质,熟知相似三角形对应边成比例是解题的关键.3、D【分析】由面积法求内切圆半径,通过直角三角形外接圆半径为斜边一半可求外接圆半径,则问题可求.【详解】解:∵62+82=102,∴此三角形为直角三角形,∵直角三角形外心在斜边中点上,∴外接圆半径为5,设该三角形内接圆半径为r,∴由面积法×6×8=×(6+8+10)r,解得r=2,三角形的内切圆半径与外接圆半径的比为2:5,故选D.【点睛】本题主要考查了直角三角形内切圆和外接圆半径的有关性质和计算方法,解决本题的关键是要熟练掌握面积计算方法.4、B【解析】∵x1,x1是一元二次方程的两根,∴x1+x1=1.故选B.5、A【分析】直接利用位似图形的性质结合相似比得出AD的长,进而得出△OAD∽△OBG,进而得出AO的长,即可得出答案.【详解】∵正方形ABCD与正方形BEFG是以原点O为位似中心的位似图形,且相似比为,∴,∵BG=12,∴AD=BC=4,∵AD∥BG,∴△OAD∽△OBG,∴∴解得:OA=2,∴OB=6,∴C点坐标为:(6,4),故选A.【点睛】此题主要考查了位似变换以及相似三角形的判定与性质,正确得出AO的长是解题关键.6、D【解析】随机事件A的概率P(A)=事件A可能出现的结果数÷所有可能出现的结果数.【详解】解:绿球的概率:P==,故选:D.【点睛】本题考查概率相关概念,熟练运用概率公式计算是解题的关键.7、B【解析】根据反比例函数图象上点的坐标特点可得k=12,再根据反比例函数的性质可得函数图象位于第一、三象限.【详解】∵反比例函数y=kx的图象经过点(-3,-4∴k=-3×(-4)=12,∵12>0,∴该函数图象位于第一、三象限,故选:B.【点睛】此题主要考查了反比例函数的性质,关键是根据反比例函数图象上点的坐标特点求出k的值.8、C【分析】连接AC.根据圆周角定理求出∠CAB即可解决问题.【详解】解:连接AC.∵∠DAB=60°,∠DAC=∠E=42°,∴∠CAB=60°﹣42°=18°,∵AB是直径,∴∠ACB=90°,∴∠B=90°﹣18°=72°,故选:C.【点睛】本题主要考察圆周角定理,解题关键是连接AC.利用圆周角定理求出∠CAB.9、D【解析】试题分析:根据题意可知,若使点A在⊙O内,则点A到圆心的大小应该小于圆的半径,因此圆的半径应该大于1.故选D考点:点与圆的位置关系10、C【解析】依据一元二次方程的定义解答即可.【详解】A.x20是分式方程,故错误;B.y2﹣3x+2=0是二元二次方程,故错误;C.x2=5x是一元二次方程,故正确;D.x2﹣4=(x+1)2是一元一次方程,故错误.故选:C.【点睛】本题考查了一元二次方程的定义,掌握一元二次方程的定义是解答本题的关键.二、填空题(每小题3分,共24分)11、y=0.2(x-2)+2【解析】解:∵函数y=(x﹣2)2+1的图象过点A(1,m),B(4,n),∴m=(1﹣2)2+1=1,n=(4﹣2)2+1=1,∴A(1,1),B(4,1),过A作AC∥x轴,交B′B的延长线于点C,则C(4,1),∴AC=4﹣1=1.∵曲线段AB扫过的面积为12(图中的阴影部分),∴AC•AA′=1AA′=12,∴AA′=4,即将函数y=(x﹣2)2+1的图象沿y轴向上平移4个单位长度得到一条新函数的图象,∴新图象的函数表达式是y=(x﹣2)2+2.故答案为y=0.2(x﹣2)2+2.点睛:本题主要考查了二次函数图象与几何变换以及平行四边形面积求法等知识,根据已知得出AA′是解题的关键.12、.【解析】根据相似三角形的性质,利用相似比求出梯形的上底和下底,用面积公式计算即可.【详解】解:如图,对角线所分得的三个三角形相似,根据相似的性质可知,解得,即阴影梯形的上底就是().再根据相似的性质可知,解得:,所以梯形的下底就是,所以阴影梯形的面积是.故答案为:.【点睛】本题考查的是相似三角形的性质,相似三角形的对应边成比例.13、x【分析】(1)根据勾股定理求得AM,进而得出AN,证得△AEN∽△AMB,由相似三角形的性质即可求得AE的长;(2)连接AK、MG、CK,构建全等三角形和直角三角形,证明AK=MK=CK,再根据四边形的内角和定理得∠AKM=90°,利用直角三角形斜边上的中线等于斜边的一半得NK=AM=AN,然后根据相似三角形的性质求得==x,即可得出=x.【详解】(1)解:∵正方形ABCD的边长为1,BM=x,∴AM=,∵点N是AM的中点,∴AN=,∵EF⊥AM,∴∠ANE=90°,∴∠ANE=∠ABM=90°,∵∠EAN=∠MAB,∴△AEN∽△AMB,∴=,即=,∴AE=,故答案为:;(2)解:如图,连接AK、MG、CK,由正方形的轴对称性△ABK≌△CBK,∴AK=CK,∠KAB=∠KCB,∵EF⊥AM,N为AM中点,∴AK=MK,∴MK=CK,∠KMC=∠KCM,∴∠KAB=∠KMC,∵∠KMB+∠KMC=180°,∴∠KMB+∠KAB=180°,又∵四边形ABMK的内角和为360°,∠ABM=90°,∴∠AKM=90°,在Rt△AKM中,AM为斜边,N为AM的中点,∴KN=AM=AN,∴=,∵△AEN∽△AMB,∴==x,∴=x,故答案为:x.【点睛】本题是四边形的综合题,考查了正方形的性质,相似三角形的判定和性质,全等三角形判定和性质,等腰三角形的性质,以及直角三角形斜边.上的中线的性质,证得KN=
AN是解题的关键.14、1,,【分析】分别利用当DP∥AB时,当DP∥AC时,当∠CDP=∠A时,当∠BPD=∠BAC时求出相似三角形,进而得出结果.【详解】BC=6,CD=2,
∴BD=4,①如图,当DP∥AB时,△PDC∽△ABC,
∴,∴,∴DP=1;②如图,当DP∥AC时,△PBD∽△ABC.
∴,∴,∴DP=;③如图,当∠CDP=∠A时,∠DPC∽△ABC,∴,∴,∴DP=;④如图,当∠BPD=∠BAC时,过点D的直线l与另一边的交点在其延长线上,,不合题意。综上所述,满足条件的DP的值为1,,.【点睛】本题考查了相似变换,利用分类讨论得出相似三角形是解题的关键,注意不要漏解.15、-1【分析】根据一元二次方程的定义:只含有一个未知数,并且未知数的最高次数是1的整式方程叫一元二次方程进行分析即可.【详解】解:依题意得:|m|=1,且m-1≠0,
解得m=-1.
故答案为:-1.【点睛】本题考查了一元二次方程的定义,关键是掌握一元二次方程必须同时满足三个条件:①整式方程,即等号两边都是整式;方程中如果有分母,那么分母中无未知数;②只含有一个未知数;③未知数的最高次数是1.16、或【分析】由平行四边形的性质得出∠B=∠D=30°,CD=AB=6,AD=BC=6,作CH⊥AD于H,则CH=CD=3,DH=CH=3=AD,得出AH=DH,由线段垂直平分线的性质得出CA=CD=AB=6,由等腰三角形的性质得出∠ACB=∠B=30°,由平行线的性质得出∠BFG=∠ACB=30°,分两种情况:①作EM⊥BF于M,在BF上截取EN=BE=3,则∠ENB=∠B=30°,由直角三角形的性质得出EM=BE=,BM=NM=EM=,得出BN=2BM=3,再证出FN=EN=3,即可得出结果;②作EM⊥BC于M,在BC上截取EN=BE=3,连接EN,则∠ENB=∠B=30°,得出EN∥AC,EM=BE=,BM=NM=EM=,BN=2BM=3,证出FG∥EN,则∠G=∠GEN,证出∠GEN=∠ENB=∠B=∠G=30°,推出∠BEN=120°,得出∠BEG=120°﹣∠GEN=90°,由折叠的性质得∠BEF=∠GEF=∠BEG=45°,证出∠NEF=∠NFE,则FN=EN=3,即可得出结果.【详解】解:∵四边形ABCD是平行四边形,∴∠B=∠D=30°,CD=AB=6,AD=BC=6,作CH⊥AD于H,则CH=CD=3,DH=CH=3=AD,∴AH=DH,∴CA=CD=AB=6,∴∠ACB=∠B=30°,∵FG∥AC,∴∠BFG=∠ACB=30°,∵点E是AB边的中点,∴BE=3,分两种情况:①作EM⊥BF于M,在BF上截取EN=BE=3,连接EN,如图1所示:则∠ENB=∠B=30°,∴EM=BE=,BM=NM=EM=,∴BN=2BM=3,由折叠的性质得:∠BFE=∠GFE=15°,∵∠NEF=∠ENB﹣∠BFE=15°=∠BFE,∴FN=EN=3,∴BF=BN+FN=3+3;②作EM⊥BC于M,在BC上截取EN=BE=3,连接EN,如图2所示:则∠ENB=∠B=30°,∴EN∥AC,EM=BE=,BM=NM=EM=,∴BN=2BM=3,∵FG∥AC,∴FG∥EN,∴∠G=∠GEN,由折叠的性质得:∠B=∠G=30°,∴∠GEN=∠ENB=∠B=∠G=30°,∵∠BEN=180°﹣∠B﹣∠ENB=180°﹣30°﹣30°=120°,∴∠BEG=120°﹣∠GEN=120°﹣30°=90°,由折叠的性质得:∠BEF=∠GEF=∠BEG=45°,∴∠NEF=∠NEG+∠GEF=30°+45°=75°,∠NFE=∠BEF+∠B=45°+30°=75°,∴∠NEF=∠NFE,∴FN=EN=3,∴BF=BN﹣FN=3﹣3;故答案为:或.【点睛】本题考查了翻折变换的性质、平行四边形的性质、直角三角形的性质、线段垂直平分线的性质、等腰三角形的性质等知识;掌握翻折变换的性质和等腰三角形的性质是解答本题的关键.17、9或2或3.【解析】分析:共有三种情况:①当DG=,CG=2时,满足DG2+CG2=CD2,此时HG=,可得正方形EFGH的面积为2;②当DG=8,CG=1时,满足DG2+CG2=CD2,此时HG=7,可得正方形EFGH的面积为3;③当DG=7,CG=4时,满足DG2+CG2=CD2,此时HG=3,可得正方形EFGH的面积为9.详解:①当DG=,CG=2时,满足DG2+CG2=CD2,此时HG=,可得正方形EFGH的面积为2.②当DG=8,CG=1时,满足DG2+CG2=CD2,此时HG=7,可得正方形EFGH的面积为3;③当DG=7,CG=4时,满足DG2+CG2=CD2,此时HG=3,可得正方形EFGH的面积为9.故答案为9或2或3.点睛:本题考查作图-应用与设计、勾股定理等知识,解题的关键是学会利用数形结合的思想解决问题,属于中考填空题中的压轴题.18、1【分析】根据二次函数的定义得到且,然后解不等式和方程即可得到的值.【详解】∵函数是关于的二次函数,
∴且,解方程得:或(舍去),
∴.
故答案为:1.【点睛】本题考查二次函数的定义,关键是掌握二次函数的定义:一般地,形如(是常数,)的函数,叫做二次函数.三、解答题(共66分)19、(1)这个袋中A、B、C三种球分别为1个、1个、2个;(2)【分析】(1)由题意列方程,解方程即可;(2)首先画树状图,由概率公式即可得出答案.【详解】解:由题意得:[x+x+(x+1)]=x,解得:x=1,∴x+1=2,答:这个袋中A、B、C三种球分别为1个、1个、2个;(2)由题意,画树状图如图所示共有12个等可能的结果,摸到1个A球和1个C球的结果有4个,∴摸到1个A球和1个C球的概率为.【点睛】此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件.注意方程思想的应用.20、【分析】作交于点,则,,易得,根据光的反射规律易得,可得△CDE和三角形ABE均为等腰直角三角形,设,则,,,在中有,代入求解即可.【详解】解:如图作交于点,则,在中,易求得由光的反射规律易得,在中,易求得设,则,,在中,,即,解得:即旗杆的高度为.【点睛】本题考查解直角三角形,解题的关键是熟练运用锐角三角函数的定义以及光的反射规律,本题属于中等题型21、(1)见解析;(2);(3)矩形EFHD的面积最小值为,k=.【分析】(1)由矩形的性质得出∠B=90°,AD=BC=4,DC=AB=3,AD∥BC,证出∠EMD=∠FNE=90°,∠NEF=∠MDE,即可得出△MED∽△NFE;(2)设AM=x,则MD=NC=4﹣x,由三角函数得出ME=x,得出NE=3﹣x,由相似三角形的性质得出=,求出NF=x,得出FC=4﹣x﹣x=4﹣x,由勾股定理得出EF==,当EF=FC时,得出方程4﹣x=,解得x=4(舍去),或x=,进而得出答案;(3)由相似三角形的性质得出==,得出DE=EF,求出矩形EFHD的面积=DE×EF=EF2==,由二次函数的性质进而得出答案.【详解】(1)证明:∵四边形ABCD是矩形,∴∠B=90°,AD=BC=4,DC=AB=3,AD∥BC,∵MN⊥BC,∴MN⊥AD,∴∠EMD=∠FNE=90°,∵四边形DEFH是矩形,∴∠MED+∠NEF=90°,∴∠NEF=∠MDE,∴△MED∽△NFE;(2)解:设AM=x,则MD=NC=4﹣x,∵tan∠DAC=tan∠MAE===,∴ME=x,∴NE=3﹣x,∵△MED∽△NFE,∴=,即=,解得:NF=x,∴FC=4﹣x﹣x=4﹣x,EF==,当EF=FC时,4﹣x=,解得:x=4或x=,由题意可知x=4不合题意,当x=时,AE=,∵AC===5,∴k==;(3)解:由(1)可知:△MED∽△NFE,∴,∴DE=EF,∴矩形EFHD的面积=DE×EF=EF2==∴当x﹣=0时,即x=时,矩形EFHD的面积最小,最小值为:,∵cos∠MAE===,∴AE=AM=×=,此时k==.【点睛】本题考查了矩形与相似三角形,以及二次函数的应用,解题的关键是利用相似三角形的性质建立二次函数模型是解题的关键.22、(1)丙、甲、乙;(2)甲组的成绩最高.【解析】试题分析:(1)计算各小组的平均成绩,并从高分到低分确定小组的排名顺序即可;(2)分别计算各小组的加权平均成绩,然后比较即可.试题解析:(1)甲:(91+80+78)÷3=83;乙:(81+74+85)÷3=80;丙:(79+83+90)÷3=84.∴小组的排名顺序为:丙、甲、乙.(2)甲:91×40%+80×30%+78×30%=83.8乙:81×40%+74×30%+85×30%=80.1丙:79×40%+83×30%+90×30%=83.5∴甲组的成绩最高考点:平均数;加权平均数.23、(1)B(0,2),;(2)①点M的坐标为(,0)或M(,0);②m=-1或m=或m=.【分析】(1)把点代入求得c值,即可得点B的坐标;抛物线经过点,即可求得b值,从而求得抛物线的解析式;(2)由轴,M(m,0),可得N(),①分∠NBP=90°和∠BNP=90°两种情况求点M的坐标;②分N为PM的中点、P为NM的中点、M为PN的中点3种情况求m的值.【详解】(1)直线与轴交于点,∴,解得c=2∴B(0,2),∵抛物线经过点,∴,∴b=∴抛物线的解析式为;(2)∵轴,M(m,0),∴N()①有(1)知直线AB的解析式为,OA=3,OB=2∵在△APM中和△BPN中,∠APM=∠BPN,∠AMP=90°,若使△APM中和△BPN相似,则必须∠NBP=90°或∠BNP=90°,分两种情况讨论如下:(I)当∠NBP=90°时,过点N作NC轴于点C,则∠NBC+∠BNC=90°,NC=m,BC=∵∠NBP=90°,∴∠NBC+∠ABO=90°,∴∠BNC=∠ABO,∴Rt△NCB∽Rt△BOA∴,即,解得m=0(舍去)或m=∴M(,0);(II)当∠BNP=90°时,BNMN,∴点N的纵坐标为2,∴解得m=0(舍去)或m=∴M(,0);综上,点M的坐标为(,0)或M(,0);②由①可知M(m,0),P(m,),N(m,),∵M,P,N三点为“共谐点”,∴有P为线段MN的中点、M为线段PN的中点或N为线段PM的中点,当P为线段MN的中点时,则有2()=,解得m=3(三点重合,舍去)或m=;当M为线段PN的中点时,则有+()=0,解得m=3(舍去)或m=−1;当N为线段PM的中点时,则有=2(),解得m=3(舍去)或m=;综上可知当M,P,N三点成为“共谐点”时m的值为或−1或.考点:二次函数综合题.24、(1)50;(2)12;(3).【分析】(1)根据条形图和扇形图中打篮球的数据计算得出总人数;(2)用总人数减去其他组的人数即可得到踢足球的人数;(3)列
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《行政职业能力测验》2024年公务员考试阿克陶县预测试卷含解析
- Unitech数据采集器PA690产品介绍
- 第16课 毛泽东开辟井冈山道路(解析版)
- 2024年体育个人工作总结
- 《特斯拉电动汽车》课件
- 新闻业的变革与挑战
- 保险公司人事工作总结
- 《水利工程质量管理》课件
- 2023-2024年项目部安全管理人员安全培训考试题及参考答案【A卷】
- 保护濒危动物宣传方案万能2022
- 车间生产中的节能减排与环境保护技术
- 内蒙古自治区呼和浩特市2023-2024学年英语九上期末学业质量监测试题含解析
- 通用劳务合同Word模板下载(多份)
- 第七讲 磁电选
- 昆虫的农业和经济价值
- 天津市部分区2023-2024学年六年级上学期期末数学试卷
- 长期照护服务流程
- 精心打造东北大学近四年C语言理论考试试题及答案
- 《Power Bi应用》课程标准
- 《疯狂动物城》全本台词中英文对照
- 幼儿园的品格与道德教育主题班会课件
评论
0/150
提交评论