2023届四川省德阳市中学江县数学九上期末达标检测模拟试题含解析_第1页
2023届四川省德阳市中学江县数学九上期末达标检测模拟试题含解析_第2页
2023届四川省德阳市中学江县数学九上期末达标检测模拟试题含解析_第3页
2023届四川省德阳市中学江县数学九上期末达标检测模拟试题含解析_第4页
2023届四川省德阳市中学江县数学九上期末达标检测模拟试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年九上数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.若的半径为3,且点到的圆的距离是5,则点在()A.内 B.上 C.外 D.都有可能2.如图,抛物线与轴交于点,顶点坐标为,与轴的交点在、之间(包含端点).有下列结论:①当时,;②;③;④.其中正确的有()A.1个 B.2个 C.3个 D.4个3.如图,若二次函数的图象的对称轴是直线,则下列四个结论中,错误的是().A. B. C. D.4.不等式的解集在数轴上表示正确的是()A. B.C. D.5.在Rt△ABC中,∠C=90°,∠B=25°,AB=5,则BC的长为()A.5sin25° B.5tan65° C.5cos25° D.5tan25°6.若反比例函数y=(k≠0)的图象经过点(﹣4,),则下列点在该图象上的是()A.(﹣5,2) B.(3,﹣6) C.(2,9) D.(9,2)7.己知点都在反比例函数的图象上,则()A. B. C. D.8.如图,线段OA=2,且OA与x轴的夹角为45°,将点A绕坐标原点O逆时针旋转105°后得到点,则的坐标为()A. B. C. D.9.在数轴上表示不等式﹣2≤x<4,正确的是()A. B.C. D.10.若两个最简二次根式和是同类二次根式,则n的值是()A.﹣1 B.4或﹣1 C.1或﹣4 D.4二、填空题(每小题3分,共24分)11.二次函数y=x2-2x+2图像的顶点坐标是______.12.某型号的冰箱连续两次降价,每台售价由原来的2370元降到了1160元,若设平均每次降价的百分率为,则可列出的方程是__________________________________.13.一个口袋中放有除颜色外,形状大小都相同的黑白两种球,黑球6个,白球10个.现在往袋中放入m个白球和4个黑球,使得摸到白球的概率为,则m=__.14.如图,在△ABC中,∠A=90°,AB=AC=2,以AB为直径的圆交BC于点D,求图中阴影部分的面积为_____.15.二次函数图像的顶点坐标为_________.16.有三张正面分别写有数字﹣1,1,2的卡片,它们背面完全相同,现将这三张卡片背面朝上洗匀后随即抽取一张,以其正面数字作为a的值,然后再从剩余的两张卡片随机抽一张,以其正面的数字作为b的值,则点(a,b)在第二象限的概率为_____.17.若关于的分式方程有增根,则的值为__________.18.将抛物线y=(x+2)25向右平移2个单位所得抛物线解析式为_____.三、解答题(共66分)19.(10分)某小区开展了“行车安全,方便居民”的活动,对地下车库作了改进.如图,这小区原地下车库的入口处有斜坡AC长为13米,它的坡度为i=1:2.4,AB⊥BC,为了居民行车安全,现将斜坡的坡角改为13°,即∠ADC=13°(此时点B、C、D在同一直线上).(1)求这个车库的高度AB;(2)求斜坡改进后的起点D与原起点C的距离(结果精确到0.1米).(参考数据:sin13°≈0.225,cos13°≈0.974,tan13°≈0.231,cot13°≈4.331)20.(6分)某商场将进价为元的台灯以元售出,平均每月能售出个,调查表明:这种台灯的售价每上涨元,其销售量就减少个.为了实现平均每月元的销售利润,这种台灯的售价应定为多少?这时应进台灯个?如果商场要想每月的销售利润最多,这种台灯的售价又将定为多少?这时应进台灯多个?21.(6分)为弘扬遵义红色文化,传承红色文化精神,某校准备组织学生开展研学活动.经了解,有A.遵义会议会址、B.苟坝会议会址、C.娄山关红军战斗遗址、D.四渡赤水纪念馆共四个可选择的研学基地.现随机抽取部分学生对基地的选择进行调查,每人必须且只能选择一个基地.根据调查结果绘制如下不完整的条形统计图和扇形统计图.(1)统计图中______,______;(2)若该校有1500名学生,请估计选择基地的学生人数;(3)某班在选择基地的6名学生中有4名男同学和2名女同学,需从中随机选出2名同学担任“小导游”,请用树状图或列举法求这2名同学恰好是一男一女的概率.22.(8分)全国第二届青年运动会是山西省历史上第一次举办的大型综合性运动会,太原作为主赛区,新建了很多场馆,其中在汾河东岸落成了太原水上运动中心,它的终点塔及媒体中心是一个以“大帆船”造型(如图1),外观极具创新,这里主要承办赛艇、皮划艇、龙舟等项目的比赛.“青春”数学兴趣小组为了测量“大帆船”AB的长度,他们站在汾河西岸,在与AB平行的直线l上取了两个点C、D,测得CD=40m,∠CDA=110°,∠ACB=18.5°,∠BCD=16.5°,如图1.请根据测量结果计算“大帆船”AB的长度.(结果精确到0.1m,参考数据:sin16.5°≈0.45,tan16.5°≈0.50,≈1.41,≈1.73)23.(8分)抛物线过点(0,-5)和(2,1).(1)求b,c的值;(2)当x为何值时,y有最大值?24.(8分)在不透明的袋子中有四张标有数字1,2,3,4的卡片,小明、小华两人按照各自的规则玩抽卡片游戏.小明画出树形图如下:小华列出表格如下:第一次

第二次

1

2

3

4

1

(1,1)

(2,1)

(3,1)

(4,1)

2

(1,2)

(2,2)

(4,2)

3

(1,3)

(2,3)

(3,3)

(4,3)

4

(1,4)

(2,4)

(3,4)

(4,4)

回答下列问题:(1)根据小明画出的树形图分析,他的游戏规则是:随机抽出一张卡片后(填“放回”或“不放回”),再随机抽出一张卡片;(2)根据小华的游戏规则,表格中①表示的有序数对为;(3)规定两次抽到的数字之和为奇数的获胜,你认为淮获胜的可能性大?为什么?25.(10分)若关于x的方程kx2﹣2x﹣3=0有实根,求k的取值范围.26.(10分)已知:关于x的一元二次方程x2﹣(2m+3)x+m2+3m+2=1.(1)已知x=2是方程的一个根,求m的值;(2)以这个方程的两个实数根作为△ABC中AB、AC(AB<AC)的边长,当BC=时,△ABC是等腰三角形,求此时m的值.

参考答案一、选择题(每小题3分,共30分)1、C【分析】要确定点与圆的位置关系,主要确定点与圆心的距离与半径的大小关系,设点与圆心的距离d,则d>r时,点在圆外;当d=r时,点在圆上;当d<r时,点在圆内.【详解】解:∵点到圆心的距离5,大于圆的半径3,

∴点在圆外.故选C.【点睛】判断点与圆的位置关系,也就是比较点与圆心的距离和半径的大小关系.2、C【分析】①由抛物线的顶点坐标的横坐标可得出抛物线的对称轴为x=1,结合抛物线的对称性及点A的坐标,可得出点B的坐标,由点B的坐标即可断定①正确;②由抛物线的开口向下可得出a<1,结合抛物线对称轴为x=-=1,可得出b=-2a,将b=-2a代入2a+b中,结合a<1即可得出②不正确;③由抛物线与y轴的交点的范围可得出c的取值范围,将(-1,1)代入抛物线解析式中,再结合b=-2a即可得出a的取值范围,从而断定③正确;④结合抛物线的顶点坐标的纵坐标为,结合a的取值范围以及c的取值范围即可得出n的范围,从而断定④正确.综上所述,即可得出结论.【详解】解:①由抛物线的对称性可知:

抛物线与x轴的另一交点横坐标为1×2-(-1)=2,

即点B的坐标为(2,1),

∴当x=2时,y=1,①正确;

②∵抛物线开口向下,

∴a<1.

∵抛物线的顶点坐标为(1,n),

∴抛物线的对称轴为x=-=1,

∴b=-2a,

2a+b=a<1,②不正确;

③∵抛物线与y轴的交点在(1,2)、(1,2)之间(包含端点),

∴2≤c≤2.

令x=-1,则有a-b+c=1,

又∵b=-2a,

∴2a=-c,即-2≤2a≤-2,

解得:-1≤a≤-,③正确;

④∵抛物线的顶点坐标为,∴n==c-,又∵b=-2a,2≤c≤2,-1≤a≤-,

∴n=c-a,≤n≤4,④正确.

综上可知:正确的结论为①③④.

故选C.【点睛】本题考查了二次函数图象与系数的关系,解决该题型题目时,利用二次函数的系数表示出来抛物线的顶点坐标是关键.3、C【分析】根据对称轴是直线得出,观察图象得出,,进而可判断选项A,根据时,y值的大小与可判断选项C、D,根据时,y值的大小可判断选项B.【详解】由题意知,,即,由图象可知,,,∴,∴,选项A正确;当时,,选项D正确;∵,∴,选项C错误;当时,,选项B正确;故选C.【点睛】本题考查二次函数的图象与系数a,b,c的关系,学会取特殊点的方法是解本题的关键.4、B【解析】先求出不等式的解集,再在数轴上表示出来即可.【详解】解:,移项得:,合并同类项得:,系数化为1得,,在数轴上表示为:故选:B.【点睛】本题考查了在数轴上表示不等式的解集,把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.5、C【分析】在Rt△ABC中,由AB及∠B的值,可求出BC的长.【详解】在Rt△ABC中,∠C=90°,∠B=25°,AB=5,∴BC=AB•cos∠B=5cos25°.故选:C.【点睛】本题考查了解直角三角形的问题,掌握解直角三角形及其应用是解题的关键.6、B【分析】根据反比例函数y=(k≠0)的图象经过点(﹣4,)求出k的值,进而根据在反比例函数图像上的点的横纵坐标的积应该等于其比例系数对各选项进行代入判断即可.【详解】∵若反比例函数y=(k≠0)的图象经过点(﹣4,),∴k=﹣4×=﹣18,A:,故不在函数图像上;B:,故在函数图像上;C:,故不在函数图像上;D:,故不在函数图像上.故选:B.【点睛】本题主要考查了反比例函数图像上点的坐标特征,求出k的值是解题关键.7、D【解析】试题解析:∵点A(1,y1)、B(1,y1)、C(-3,y3)都在反比例函数y=的图象上,∴y1=-;y1=-1;y3=,

∵>->-1,

∴y3>y1>y1.

故选D.8、C【分析】如图所示,过作⊥y轴于点B,作⊥x轴于点C,根据旋转的性质得出,,从而得出,利用锐角三角函数解出CO与OB即可解答.【详解】解:如图所示,过作⊥y轴于点B,作⊥x轴于点C,由旋转可知,,,∵AO与x轴的夹角为45°,∴∠AOB=45°,∴,∴,,∴,故选:C.【点睛】本题考查了旋转的性质以及解直角三角形,解题的关键是得出,并熟悉锐角三角函数的定义及应用.9、A【分析】根据不等式的解集在数轴上表示出来即可.【详解】解:在数轴上表示不等式﹣2≤x<4的解集为:故选:A.【点睛】此题主要考查不等式解集的表示,解题的关键是熟知不等式解集的表示方法.10、B【分析】根据同类二次根式的概念可得关于n的方程,解方程可求得n的值,再根据二次根式有意义的条件进行验证即可得.【详解】由题意:n2-2n=n+4,解得:n1=4,n2=-1,当n=4时,n2-2n=8,n+4=8,符合题意,当n=-1时,n2-2n=3,n+4=3,符合题意,故选B.【点睛】本题考查了同类二次根式,二次根式有意义的条件,解一元二次方程等知识,熟练掌握和灵活运用相关知识是解题的关键.二、填空题(每小题3分,共24分)11、(1,1)【解析】分析:把二次函数解析式转化成顶点式形式,然后写出顶点坐标即可.详解:∵∴顶点坐标为(1,1).故答案为:(1,1).点睛:考查二次函数的性质,熟练掌握配方法是解题的关键.12、【分析】先列出第一次降价后售价的代数式,再根据第一次的售价列出第二次降价后售价的代数式,然后根据已知条件即可列出方程.【详解】依题意得:第一次降价后售价为:2370(1-x),

则第二次降价后的售价为:2370(1-x)(1-x)=2370(1-x)2,

故.

故答案为.【点睛】此题考查一元二次方程的运用,解题关键在于要注意题意指明的是降价,应该是1-x而不是1+x.13、1【分析】根据概率公式列出方程,即可求出答案.【详解】解:由题意得,解得m=1,经检验m=1是原分式方程的根,故答案为1.【点睛】本题主要考查了概率公式,根据概率公式列出方程是解题的关键.14、1【分析】连接AD,由图中的图形关系看出阴影部分的面积可以简化成一个三角形的面积,然后通过已知条件求出面积.【详解】解:连接AD,

∵AB=BC=2,∠A=90°,∴∠C=∠B=45°,∴∠BAD=45°,∴BD=AD,∴BD=AD=,∴由BD,AD组成的两个弓形面积相等,∴阴影部分的面积就等于△ABD的面积,∴S△ABD=AD•BD=××=1.故答案为:1.【点睛】本题考查的是扇形面积的计算,根据题意作出辅助线,构造出等腰直角三角形是解答此题的关键.15、(,)【分析】用配方法将抛物线的一般式转化为顶点式,确定顶点坐标即可.【详解】∵

∴抛物线顶点坐标为.

故本题答案为:.【点睛】本题考查了抛物线解析式与顶点坐标的关系,求顶点坐标可用配方法,也可以用顶点坐标公式.16、【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果以及点(a,b)在第二象限的情况,再利用概率公式即可求得答案.【详解】解:画树状图图得:∵共有6种等可能的结果,点(a,b)在第二象限的有2种情况,∴点(a,b)在第二象限的概率为:.故答案为:.【点睛】本题考查的是利用公式计算某个事件发生的概率,注意找全所有可能出现的结果数作分母.在判断某个事件A可能出现的结果数时,要注意审查关于事件A的说法,避免多数或少数.17、3【分析】将分式方程去分母转化为整式方程,并求出x的值,然后再令x+2=0,即可求得m的值.【详解】解:由得:x=4-2m令x+2=0,得4-2m+2=0,解得m=3故答案为3.【点睛】本题考查了分式方程的增根,解分式方程和把增根代入整式方程求得相关字母的值是解答本题的关键.18、y=x2−1【分析】根据平移规律“左加右减”解答.【详解】按照“左加右减,上加下减”的规律可知:y=(x+2)2−1向右平移2个单位,得:y=(x+2−2)2−1,即y=x2−1.故答案是:y=x2−1.【点睛】考查了抛物线的平移以及抛物线解析式的变化规律:左加右减,上加下减.三、解答题(共66分)19、(1)这个车库的高度AB为5米;(2)斜坡改进后的起点D与原起点C的距离为9.7米.【解析】(1)根据坡比可得=,利用勾股定理求出AB的长即可;(2)由(1)可得BC的长,由∠ADB的余切值可求出BD的长,进而求出CD的长即可.【详解】(1)由题意,得:∠ABC=90°,i=1:2.4,在Rt△ABC中,i==,设AB=5x,则BC=12x,∴AB2+BC2=AC2,∴AC=13x,∵AC=13,∴x=1,∴AB=5,答:这个车库的高度AB为5米;(2)由(1)得:BC=12,在Rt△ABD中,cot∠ADC=,∵∠ADC=13°,AB=5,∴DB=5cot13°≈21.655(m),∴DC=DB﹣BC=21.655﹣12=9.655≈9.7(米),答:斜坡改进后的起点D与原起点C的距离为9.7米.【点睛】此题主要考查了坡角的定义以、锐角的三角函数及勾股定理等知识,正确求出BC,BD的长是解题关键.20、(1)这种台灯的售价应定为元或元,这时应进台灯个或个;商场要想每月的销售利润最多,这种台灯的售价定为元,这时应进台灯个.【分析】(1)设这种台灯的售价应定为x元,根据题意得:利润为(x-30)[600-10(x-40)]=10000;(2)由(1)得:W=(x-30)[600-10(x-40)],进而求出最值即可.【详解】(1)设这种台灯的售价应定为x元,根据题意得:(x-30)[600-10(x-40)]=10000,x2-130x+4000=0,x1=80,x2=50,则600-10(80-40)=200(个),600-10(50-40)=500(个),答:这种台灯的售价应定为元或元,这时应进台灯个或个;根据题意得:设利润为,则,则(个),∴商场要想每月的销售利润最多,这种台灯的售价定为元,这时应进台灯个.21、(1)56,15;(2)555;(3)【分析】(1)根据C基地的调查人数和所在的百分比即可求出调查总人数,再乘调查A基地人数所占的百分比即可求出m,用调查D基地的人数除以调查总人数即可求出n;(2)先求出调查B基地人数所占的百分比,再乘1500即可;(3)根据题意,列出表格,然后利用概率公式求概率即可.【详解】(1)调查总人数为:40÷20%=200(人)则m=200×28%=56(人)n%=30÷200×100%=15%∴n=15.故答案为:56;15(2)(人)答:选择基地的学生人数为555人.(3)根据题意列表如下:男1男2男3男4女1女2男1(男1,男2)(男1,男3)(男1,男4)(男1,女1)(男1,女2)男2(男2,男1)(男2,男3)(男2,男4)(男2,女1)(男2,女2)男3(男3,男1)(男3,男2)(男3,男4)(男3,女1)(男3,女2)男4(男4,男1)(男4,男2)(男4,男3)(男4,女1)(男4,女2)女1(女1,男1)(女1,男2)(女1,男3)(女1,男4)(女1,女2)女2(女2,男1)(女2,男2)(女2,男3)(女2,男4)(女2,女1)由上表可知,共有30种等可能的结果,其中“1男1女”的结果有16种.所以:(1男1女).【点睛】此题考查的是条形统计图、扇形统计图和求概率问题,掌握结合条形统计图和扇形统计图得出有用信息和利用列表法求概率是解决此题的关键.22、“大帆船”AB的长度约为94.8m【分析】分别过点A、B作直线l的垂线,垂足分别为点E、F,设DE=xm,得BF=AE=CE=(x+40)m,AE=x,列出方程,求出x的值,进而即可求解.【详解】分别过点A、B作直线l的垂线,垂足分别为点E、F,设DE=xm,易知四边形ABFE是矩形,∴AB=EF,AE=BF.∵∠DCA=∠ACB+∠BCD=18.5°+16.5°=45°,∴BF=AE=CE=(x+40)m.∵∠CDA=110°,∴∠ADE=60°.∴AE=x·tan60°=x,∴x=x+40,解得:x≈54.79(m).∴BF=CE=54.79+40=94.79(m).∴CF=≈189.58(m).∴EF=CF-CE=189.58-94.79≈94.8(m).∴AB=94.8(m).答:“大帆船”AB的长度约为94.8m.【点睛】本题主要考查三角函数的实际应用,添加辅助线,构造直角三角形,熟练掌握三角函数的定义,是解题的关键.23、(1)b,c

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论