2023届陕西省陕西师范大附属中学数学九年级第一学期期末调研试题含解析_第1页
2023届陕西省陕西师范大附属中学数学九年级第一学期期末调研试题含解析_第2页
2023届陕西省陕西师范大附属中学数学九年级第一学期期末调研试题含解析_第3页
2023届陕西省陕西师范大附属中学数学九年级第一学期期末调研试题含解析_第4页
2023届陕西省陕西师范大附属中学数学九年级第一学期期末调研试题含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年九上数学期末模拟试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每题4分,共48分)1.如图,点D,E分别在△ABC的边AB,AC上,且DE//BC,若AD=2,DB=1,AC=6,则AE等于()A.2 B.3 C.4 D.52.下列对于二次根式的计算正确的是()A. B.2=2C.2=2 D.2=3.反比例函数的图象分布的象限是()A.第一、三象限 B.第二、四象限 C.第一象限 D.第二象限4.如图,已知抛物线的对称轴过点且平行于y轴,若点在抛物线上,则下列4个结论:①;②;③;④.其中正确结论的个数是()A.1 B.2 C.3 D.45.方程的根的情况是()A.有两个不相等的实数根 B.有两个相等的实数根 C.无实数根 D.只有一个实数根6.如图,线段AB两个端点的坐标分别是A(6,4),B(8,2),以原点O为位似中心,在第一象限内将线段AB缩小为原来的后得到线段CD,则端点C的坐标为()A.(3,2) B.(4,1) C.(3,1) D.(4,2)7.抛物线y=(x﹣4)2﹣5的顶点坐标和开口方向分别是()A.(4,﹣5),开口向上 B.(4,﹣5),开口向下C.(﹣4,﹣5),开口向上 D.(﹣4,﹣5),开口向下8.如图,点C在弧ACB上,若∠OAB=20°,则∠ACB的度数为()A. B. C. D.9.若抛物线y=ax2+2x﹣10的对称轴是直线x=﹣2,则a的值为()A.2 B.1 C.-0.5 D.0.510.若关于的方程有两个相等的实数根,则的值是()A.-1 B.-3 C.3 D.611.平面直角坐标系内一点P(2,-3)关于原点对称点的坐标是()A.(3,-2)B.(2,3)C.(-2,3)D.(2,-3)12.下列计算正确的是()A.2a+5b=10ab B.(﹣ab)2=a2b C.2a6÷a3=2a3 D.a2•a4=a8二、填空题(每题4分,共24分)13.如图,四边形ABCD内接于⊙O,AD∥BC,直线EF是⊙O的切线,B是切点.若∠C=80°,∠ADB=54°,则∠CBF=____°.14.已知线段、满足,则________.15.小刚和小亮用图中的转盘做“配紫色”游戏:分别转动两个转盘各一次,若其中的一个转盘转出了红色,另一个转出了蓝色,则可配成紫色,此时小刚赢,否则小亮赢.若用P1表示小刚赢的概率,用P2表示小亮赢概率,则两人赢的概率P1________P2(填写>,=或<)16.不透明的口袋里有除颜色外其它均相同的红、白、黑小球共计120个,玲玲通过多次摸球实验后发现,摸到红球和黑球的概率稳定在和,那么口袋中白球的个数极有可能是_______个.17.在这三个数中,任选两个数的积作为的值,使反例函数的图象在第二、四象限的概率是______.18.如图,在直角坐标系中,已知点、,对连续作旋转变换,依次得到,则的直角顶点的坐标为__________.三、解答题(共78分)19.(8分)如图,△ABC中,E是AC上一点,且AE=AB,∠BAC=2∠EBC,以AB为直径的⊙O交AC于点D,交EB于点F.(1)求证:BC与⊙O相切;(2)若AB=8,BE=4,求BC的长.20.(8分)已知:如图,在△ABC中,AD⊥BC于点D,E是AD的中点,连接CE并延长交边AB于点F,AC=13,BC=8,cos∠ACB=.(1)求tan∠DCE的值;(2)求的值.21.(8分)如图,在边长为1的正方形网格中,△ABC的顶点均在格点上,建立平面直角坐标系后,点A的坐标为(﹣4,1),点B的坐标为(﹣1,1).(1)画出△ABC绕点B逆时针旋转90°后得到的△A1BC1;(1)画出△ABC关于原点O对称的△A1B1C1.22.(10分)感知:如图①,在等腰直角三角形ABC中,∠ACB=90°,BC=m,将边AB绕点B顺时针旋转90°得到线段BD,过点D作DE⊥CB交CB的延长线于点E,连接CD.(1)求证:△ACB≌△BED;(2)△BCD的面积为(用含m的式子表示).拓展:如图②,在一般的Rt△ABC,∠ACB=90°,BC=m,将边AB绕点B顺时针旋转90°得到线段BD,连接CD,用含m的式子表示△BCD的面积,并说明理由.应用:如图③,在等腰△ABC中,AB=AC,BC=8,将边AB绕点B顺时针旋转90°得到线段BD,连接CD,则△BCD的面积为;若BC=m,则△BCD的面积为(用含m的式子表示).23.(10分)如图所示,折叠长方形一边AD,点D落在BC边的点F处,已知BC=10厘米,AB=8厘米,求FC的长.24.(10分)如图,在网格纸中,、都是格点,以为圆心,为半径作圆,用无刻度的直尺完成以下画图:(不写画法)(1)在圆①中画圆的一个内接正六边形;(2)在图②中画圆的一个内接正八边形.25.(12分)如图,在△ABC中,∠C=90°,CB=6,CA=8,将△ABC绕点B顺时针旋转得到△DBE,使点C的对应点E恰好落在AB上,求线段AE的长.26.如图,已知三个顶点的坐标分别为,,(1)请在网格中,画出线段关于原点对称的线段;(2)请在网格中,过点画一条直线,将分成面积相等的两部分,与线段相交于点,写出点的坐标;(3)若另有一点,连接,则.

参考答案一、选择题(每题4分,共48分)1、C【分析】根据平行线分线段成比例定理,列出比例式求解,即可得到AE的长.【详解】解:∵DE//BC∴AE:AC=AD:AB,∵AD=2,DB=1,AC=6,∴,∴AE=4,故选:C.【点睛】本题考查了平行线分线段成比例定理,注意线段之间的对应关系.2、C【解析】根据二次根式的加减法对A、B进行判断;根据二次根式的除法法则对C进行判断;根据二次根式的乘法法则对D进行判断.【详解】A、原式=2,所以A选项错误;B、原式=,所以B选项错误;C、原式=2,所以C选项正确;D、原式=6,所以D选项错误.故选C.【点睛】本题考查了二次根式的混合运算:先把各二次根式化简为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.3、A【解析】先根据反比例函数的解析式判断出k的符号,再根据反比例函数的性质即可得出结论.【详解】解:∵反比例函数y=中,k=2>0,

∴反比例函数y=的图象分布在一、三象限.

故选:A.【点睛】本题考查的是反比例函数的性质,熟知反比例函数y=(k≠0)中,当k>0时,反比例函数图象的两个分支分别位于一三象限是解答此题的关键.4、B【分析】根据二次函数的图象与性质对各个结论进行判断,即可求出答案.【详解】解:∵抛物线的对称轴过点,∴抛物线的对称轴为,即,可得由图象可知,,则,∴,①正确;∵图象与x轴有两个交点,∴,即,②错误;∵抛物线的顶点在x轴的下方,∴当x=1时,,③错误;∵点在抛物线上,即是抛物线与x轴的交点,由对称轴可得,抛物线与x轴的另一个交点为,故当x=−2时,,④正确;综上所述:①④正确,故选:B.【点睛】本题主要考查了二次函数图象与系数的关系、抛物线与x轴的交点,解题的关键是逐一分析每条结论是否正确.解决该题型题目时,熟练掌握二次函数的图象与性质是关键.5、C【分析】把a=1,b=-1,c=3代入△=b2-4ac进行计算,然后根据计算结果判断方程根的情况.【详解】∵a=1,b=-1,c=3,∴△=b2-4ac=(-1)2-4×1×3=-11<0,所以方程没有实数根.故选C.【点睛】本题考查了一元二次方程ax2+bx+c=0(a≠0,a,b,c为常数)的根的判别式△=b2-4ac.当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程没有实数根.6、A【解析】试题分析:∵线段AB的两个端点坐标分别为A(6,4),B(8,2),以原点O为位似中心,在第一象限内将线段AB缩小为原来的后得到线段CD,∴端点C的横坐标和纵坐标都变为A点的一半,∴端点C的坐标为:(3,2).故选A.考点:1.位似变换;2.坐标与图形性质.7、A【解析】根据y=a(x﹣h)2+k,a>0时图象开口向上,a<0时图象开口向下,顶点坐标是(h,k),对称轴是x=h,可得答案.【详解】由y=(x﹣4)2﹣5,得开口方向向上,顶点坐标(4,﹣5).故选:A.【点睛】本题考查了二次函数的性质,利用y=a(x﹣h)2+k,a>0时图象开口向上,在对称轴的左侧,y随x的增大而减小,在对称轴的右侧,y随x的增大而增大;a<0时图象开口向下,在对称轴的左侧,y随x的增大而增大,在对称轴的右侧,y随x的增大而减小,顶点坐标是(h,k),对称轴是x=h.8、C【分析】根据圆周角定理可得∠ACB=∠AOB,先求出∠AOB即可求出∠ACB的度数.【详解】解:∵∠ACB=∠AOB,

而∠AOB=180°-2×20°=140°,

∴∠ACB=×140°=70°.

故选:C.【点睛】本题考查了圆周角定理.在同圆或等圆中,同弧和等弧所对的圆周角相等,一条弧所对的圆周角是它所对的圆心角的一半.9、D【分析】根据抛物线y=ax2+bx+c(a≠0)的对称轴方程得到,然后求出a即可.【详解】解:∵抛物线y=ax2+2x﹣10的对称轴是直线x=﹣2,∴,∴;故选:D.【点睛】本题考查了二次函数的图象:二次函数y=ax2+bx+c(a≠0)的图象为抛物线,当a>0;对称轴为直线;抛物线与y轴的交点坐标为(0,c);当b2-4ac>0,抛物线与x轴有两个交点;当b2-4ac=0,抛物线与x轴有一个交点;当b2-4ac<0,抛物线与x轴没有交点.10、C【分析】根据方程有两个相等的实数根,判断出根的判别式为0,据此求解即可.【详解】∵关于的方程有两个相等的实数根,

∴,

解得:.故选:C.【点睛】本题考查了一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.11、C【解析】略12、C【分析】分别对选项的式子进行运算得到:2a+5b不能合并同类项,(﹣ab)2=a2b2,a2•a4=a6即可求解.【详解】解:2a+5b不能合并同类项,故A不正确;(﹣ab)2=a2b2,故B不正确;2a6÷a3=2a3,正确a2•a4=a6,故D不正确;故选:C.【点睛】本题考查了幂的运算,解题的关键是掌握幂的运算法则.二、填空题(每题4分,共24分)13、46°【分析】连接OB,OC,根据切线的性质可知∠OBF=90°,根据AD∥BC,可得∠DBC=∠ADB=54°,然后利用三角形内角和求得∠BDC=46°,然后利用同弧所对的圆心角是圆周角的2倍,求得∠BOC=92°,然后利用等腰三角形的性质求得∠OBC的度数,从而使问题得解.【详解】解:连接OB,OC,∵直线EF是⊙O的切线,B是切点∴∠OBF=90°∵AD∥BC∴∠DBC=∠ADB=54°又∵∠DCB=80°∴∠BDC=180°-∠DBC-∠DCB=46°∴∠BOC=2∠BDC=92°又∵OB=OC∴∠OBC=∴∠CBF=∠OBF-∠OBC=90-44=46°故答案为:46°【点睛】本题考查切线的性质,三角形内角和定理,等腰三角形的性质,根据题意添加辅助线正确推理论证是本题的解题关键.14、【解析】此题考查比例知识,答案15、<【分析】由于第二个转盘红色所占的圆心角为120°,则蓝色部分为红色部分的两倍,即相当于分成三个相等的扇形(红、蓝、蓝),再列出表,根据概率公式计算出小刚赢的概率和小亮赢的概率,即可得出结论.【详解】解:用列表法将所有可能出现的结果表示如下:红蓝蓝蓝(红,蓝)(蓝,蓝)(蓝,蓝)黄(红,黄)(蓝,黄)(蓝,黄)黄(红,黄)(蓝,黄)(蓝,黄)红(红,红)(蓝,红)(蓝,红)上面等可能出现的12种结果中,有3种情况可以得到紫色,所以小刚赢的概率是;则小亮赢的概率是所以;故答案为:<【点睛】本题考查了列表法或树状图法:通过列表法或树状图法展示所有等可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式求出事件A或B的概率.16、1【分析】由摸到红球和黑球的概率稳定在50%和30%附近得出口袋中得到白色球的概率,进而求出白球个数即可.【详解】设白球个数为:x个,∵摸到红球和黑球的概率稳定在50%和30%左右,∴口袋中得到白色球的概率为1−50%−30%=20%,∴=20%,解得:x=1,即白球的个数为1个,故答案为:1.【点睛】此题主要考查了利用频率估计概率,根据大量反复试验下频率稳定值即概率得出是解题关键.17、【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果,并求出k为负值的情况数,再利用概率公式即可求得答案.【详解】解:画树状图得:,∵共有6种等可能的结果,任选两个数的积作为k的值,k为负数的有4种,∴反比例函数的图象在第二、四象限的概率是:.

故答案为:.【点睛】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.注意概率=所求情况数与总情况数之比.18、【分析】根据勾股定理列式求出AB的长,再根据第四个三角形与第一个三角形的位置相同可知每三个三角形为一个循环组依次循环,然后求出一个循环组旋转前进的长度,再用2019除以3,根据商为673可知第2019个三角形的直角顶点为循环组的最后一个三角形的顶点,求出即可.【详解】解:∵点A(-3,0)、B(0,4),

∴AB==5,

由图可知,每三个三角形为一个循环组依次循环,一个循环组前进的长度为:4+5+3=12,

∵2019÷3=673,

∴△2019的直角顶点是第673个循环组的最后一个三角形的直角顶点,

∵673×12=8076,

∴△2019的直角顶点的坐标为(8076,0).故答案为(8076,0).【点睛】本题主要考查了点的坐标变化规律,仔细观察图形得到每三个三角形为一个循环组依次循环是解题的关键,也是求解的难点.图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标.三、解答题(共78分)19、(1)证明见解析;(2)BC=【分析】(1)运用切线的判定,只需要证明AB⊥BC即可,即证∠ABC=90°.连接AF,依据直径所对圆周角为90度,可以得到∠AFB=90°,依据三线合一可以得到2∠BAF=∠BAC,再结合已知条件进行等量代换可得∠BAF=∠EBC,最后运用直角三角形两锐角互余及等量代换即可.(2)依据三线合一可以得到BF的长度,继而算出∠BAF=∠EBC的正弦值,过E作EG⊥BC于点G,利用三角函数可以解除EG的值,依据垂直于同一直线的两直线平行,可得EG与AB平行,从而得到相似三角形,依据相似三角形的性质可以求出AC的长度,最后运用勾股定理求出BC的长度.【详解】(1)证明:连接AF.∵AB为直径,∴∠AFB=90°.又∵AE=AB,∴2∠BAF=∠BAC,∠FAB+∠FBA=90°.又∵∠BAC=2∠EBC,∴∠BAF=∠EBC,∴∠FAB+∠FBA=∠EBC+∠FBA=90°.∴∠ABC=90°.即AB⊥BC,∴BC与⊙O相切;(2)解:过E作EG⊥BC于点G,∵AB=AE,∠AFB=90°,∴BF=BE=×4=2,∴sin∠BAF=,又∵∠BAF=∠EBC,∴sin∠EBC=.又∵在△EGB中,∠EGB=90°,∴EG=BE•sin∠EBC=4×=1,∵EG⊥BC,AB⊥BC,∴EG∥AB,∴△CEG∽△CAB,∴.∴,∴CE=,∴AC=AE+CE=8+=.在Rt△ABC中,BC=【点睛】本题考查了切线的判定定理,相似三角形的判定及性质,等腰三角形三线合一的性质,锐角三角函数等知识,作辅助线构造熟悉图形,实现角或线段的转化是解题的关键.20、(1)tan∠DCE=;(2)=.【分析】(1)根据已知条件求出CD,再利用勾股定理求解出ED,即可得到结果;(2)过D作DG∥CF交AB于点G,根据平行线分线段成比例即可求得结果;【详解】解:(1)∵AD⊥BC,∴∠ADC=90°,在Rt△ADC中,AC=13,cos∠ACB=,∴CD=5,由勾股定理得:AD=,∵E是AD的中点,∴ED=AD=6,∴tan∠DCE=;(2)过D作DG∥CF交AB于点G,如图所示:∵BC=8,CD=5,∴BD=BC﹣CD=3,∵DG∥CF,∴,,∴AF=FG,设BG=3x,则AF=FG=5x,BF=FG+BG=8x∴.【点睛】本题主要考查了解直角三角形的应用,结合勾股定理和平行线分线段成比例求解是解题的关键.21、(1)详见解析;(1)详见解析.【分析】(1)分别作出A,C的对应点A1,C1即可得到△A1BC1;

(1)分别作出A,B,C的对应点A1,B1,C1即可得到△A1B1C1.【详解】(1)如图所示,△A1BC1即为所求.(1)如图所示,△A1B1C1即为所求.【点睛】本题考查作图-旋转变换,熟练掌握位旋转变换的性质是解本题的关键.22、感知:(1)详见解析;(1)m1;拓展:m1,理由详见解析;应用:16,m1.【解析】感知:(1)由题意可得CA=CB,∠A=∠ABC=25°,由旋转的性质可得BA=BD,∠ABD=90°,可得∠DBE=∠ABC,即可证△ACB≌△BED;(1)由△ACB≌△BED,可得BC=DE=m,根据三角形面积求法可求△BCD的面积;拓展:作DG⊥CB交CB的延长线于G,可证△ACB≌△BGD,可得BC=DG=m,根据三角形面积求法可求△BCD的面积;应用:过点A作AN⊥BC于N,过点D作DM⊥BC的延长线于点M,由等腰三角形的性质可以得出BN=BC,由条件可以得出△AFB≌△BED就可以得出BN=DM,由三角形的面积公式就可以得出结论.【详解】感知:证明:(1)∵△ABC是等腰直角三角形,∴CA=CB=m,∠A=∠ABC=25°,由旋转的性质可知,BA=BD,∠ABD=90°,∴∠DBE=25°,在△ACB和△DEB中,,∴△ACB≌△BED(AAS)(1)∵△ACB≌△BED∴DE=BC=m∴S△BCD=BC×ED=m1,故答案为m1,拓展:作DG⊥CB交CB的延长线于G,∵∠ABD=90°,∴∠ABC+∠DBG=90°,又∠ABC+∠A=90°,∴∠A=∠DBG,在△ACB和△BGD中,,∴△ACB≌△BGD(AAS),∴BC=DG=m∴S△BCD=BC×DG=m1,应用:作AN⊥BC于N,DM⊥BC交CB的延长线于M,∴∠ANB=∠M=90°,BN=BC=2.∴∠NAB+∠ABN=90°.∵∠ABD=90°,∴∠ABN+∠DBM=90°,∴∠NAB=∠MBD.∵线段BD是由线段AB旋转得到的,∴AB=BD.在△AFB和△BED中,,∴△ANB≌△BMD(AAS),∴BN=DM=BC=2.∴S△BCD=BC•DM=×8×2=16,若BC=m,则BN=DM=BC=m,∴S△BCD=BC•DM=×m×m=m1故答案为16,m1.【点睛】本题考查了等腰三角形的性质,全等三角形的判定(AAS),全等三角形的性质,直角三角形的性质,面积计算,熟练掌握这些知识点是本题解题的关键.23、4cm【解析】试题分析:想求得FC,EF长,那么就需求出BF的长,利用直角三角形ABF,使用勾股定理即可求得BF长.试题解析:折叠长方形一边AD,点D落在BC边的点F处,所以AF=AD=BC=10厘米(2分)在Rt△ABF中,AB=8厘米,AF=10厘米,由勾股定理,得AB2+BF2=AF2∴82+BF2=102∴BF=6(厘米)∴FC=10-6=4(厘米).答:FC长为4厘米.考点:1.翻折变换(折叠问题);2.矩形的性质.24、(1)见解析;(2)见解析【分析】(1)设AO的延长线与圆交于点D,根据正六边形的性质,点D即为正六边形的一个顶点,且正六

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论