2023届山西省太原地区公立学校数学九年级第一学期期末综合测试试题含解析_第1页
2023届山西省太原地区公立学校数学九年级第一学期期末综合测试试题含解析_第2页
2023届山西省太原地区公立学校数学九年级第一学期期末综合测试试题含解析_第3页
2023届山西省太原地区公立学校数学九年级第一学期期末综合测试试题含解析_第4页
2023届山西省太原地区公立学校数学九年级第一学期期末综合测试试题含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年九上数学期末模拟试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.如图所示,该几何体的俯视图是()A. B. C. D.2.如图,在中,,,,以边的中点为圆心作半圆,使与半圆相切,点分别是边和半圆上的动点,连接,则长的最大值与最小值的和是()A.8 B.9 C.10 D.123.从甲、乙、丙、丁四人中选一人参加诗词大会比赛,经过三轮初赛,他们的平均成绩都是86分,方差如下表,你认为派谁去参赛更合适()选手甲乙丙丁方差1.52.63.53.68A.甲 B.乙 C.丙 D.丁4.如图,厂房屋顶人字架(等腰三角形)的跨度BC=10m,∠B=36°,D为底边BC的中点,则上弦AB的长约为()(结果保留小数点后一位sin36°≈0.59,cos36°≈0.81,tan36°≈0.73)A.3.6m B.6.2m C.8.5m D.12.4m5.已知正多边形的一个内角是135°,则这个正多边形的边数是()A.3 B.4 C.6 D.86.如图,一张矩形纸片ABCD的长,宽将纸片对折,折痕为EF,所得矩形AFED与矩形ABCD相似,则a:A.2:1 B.:1 C.3: D.3:27.二次根式中,的取值范围是()A. B. C. D.8.方程5x2=6x﹣8化成一元二次方程一般形式后,二次项系数、一次项系数、常数项分别是()A.5、6、﹣8B.5,﹣6,﹣8C.5,﹣6,8D.6,5,﹣89.如图,正方形的边长为,动点,同时从点出发,在正方形的边上,分别按,的方向,都以的速度运动,到达点运动终止,连接,设运动时间为,的面积为,则下列图象中能大致表示与的函数关系的是()A. B.C. D.10.不透明袋子中有除颜色外完全相同的4个黑球和2个白球,从袋子中随机摸出3个球,下列事件是必然事件的是().A.3个都是黑球 B.2个黑球1个白球C.2个白球1个黑球 D.至少有1个黑球二、填空题(每小题3分,共24分)11.如图,在平面直角坐标系xOy中,P是直线y=2上的一个动点,⊙P的半径为1,直线OQ切⊙P于点Q,则线段OQ取最小值时,Q点的坐标为_____.12.若一个扇形的圆心角是120°,且它的半径是18cm,则此扇形的弧长是_______cm13.如图,D是反比例函数(k<0)的图象上一点,过D作DE⊥x轴于E,DC⊥y轴于C,一次函数y=﹣x+m与的图象都经过点C,与x轴分别交于A、B两点,四边形DCAE的面积为4,则k的值为_______.14.用一个半径为10的半圆,围成一个圆锥的侧面,该圆锥的底面圆的半径为_____.15.如图,△ABC内接于⊙O,∠ACB=35º,则∠OAB=º.16.如果A地到B地的路程为80千米,那么汽车从A地到B地的速度x千米/时和时间y时之间的函数解析式为______.17.已知线段a、b、c,其中c是a、b的比例中项,若a=2cm,b=8cm,则线段c=_____cm.18.如图,⊙O为△ABC的内切圆,D、E、F分别为切点,已知∠C=90°,⊙O半径长为1cm,BC=3cm,则AD长度为__cm.三、解答题(共66分)19.(10分)解方程:.20.(6分)如图,在中,弦垂直于直径,垂足为,连结,将沿翻转得到,直线与直线相交于点.(1)求证:是的切线;(2)若为的中点,①求证:四边形是菱形;②若,求的半径长.21.(6分)已知正比例函数的图象与反比例函数的图象交于一点,且点的横坐标为1.(1)求反比例函数的解析式;(2)当时,求反比例函数的取值范围22.(8分)如图,在△ABC中,D为BC边上的一点,且∠CAD=∠B,CD=4,BD=2,求AC的长23.(8分)阅读下列材料,关于x的方程:x+=c+的解是x1=c,x2=;x﹣=c﹣的解是x1=c,x2=﹣;x+=c+的解是x1=c,x2=;x+=c+的解是x1=c,x2=;……(1)请观察上述方程与解的特征,比较关于x的方程x+=c+(a≠0)与它们的关系猜想它的解是什么,并利用“方程的解”的概念进行验证.(2)可以直接利用(1)的结论,解关于x的方程:x+=a+.24.(8分)某商场购进一种每件价格为100元的新商品,在商场试销发现:销售单价x(元/件)与每天销售量y(件)之间满足如图所示的关系:(1)求出y与x之间的函数关系式;(2)如果商店销售这种商品,每天要获得1500元利润,那么每件商品的销售价应定为多少元?(3)写出每天的利润W与销售单价x之间的函数关系式;若你是商场负责人,会将售价定为多少,来保证每天获得的利润最大,最大利润是多少?25.(10分)已知二次函数y=ax2+bx+3的图象经过点(-3,0),(2,-5).(1)试确定此二次函数的解析式;(2)请你判断点P(-2,3)是否在这个二次函数的图象上?26.(10分)某商业集团新建一小车停车场,经测算,此停车场每天需固定支出的费用(设施维修费、车辆管理人员工资等)为800元.为制定合理的收费标准,该集团对一段时间每天小车停放辆次与每辆次小车的收费情况进行了调查,发现每辆次小车的停车费不超过5元时,每天来此处停放的小车可达1440辆次;若停车费超过5元,则每超过1元,每天来此处停放的小车就减少120辆次.为便于结算,规定每辆次小车的停车费x(元)只取整数,用y(元)表示此停车场的日净收入,且要求日净收入不低于2512元.(日净收入=每天共收取的停车费﹣每天的固定支出)(1)当x≤5时,写出y与x之间的关系式,并说明每辆小车的停车费最少不低于多少元;(2)当x>5时,写出y与x之间的函数关系式(不必写出x的取值范围);(3)该集团要求此停车场既要吸引客户,使每天小车停放的辆次较多,又要有较大的日净收入.按此要求,每辆次小车的停车费应定为多少元?此时日净收入是多少?

参考答案一、选择题(每小题3分,共30分)1、C【解析】从上往下看,总体上是一个矩形,中间隔着一个竖直的同宽的小矩形,而挖空后长方体内的剩余部分用虚线表示为左右对称的两条靠近宽的线,选项C中图象便是俯视图.故选:C.2、C【分析】如图,设⊙O与BC相切于点E,连接OE,作OP2⊥AC垂足为P2交⊙O于Q2,此时垂线段OP2最短,P2Q2最小值为OQ2-OP2,如图当Q2在AB边上时,P2与A重合时,P2Q2最大值,由此不难解决问题.【详解】解:如图,设⊙O与BC相切于点E,连接OE,作OP2⊥AC垂足为P2交⊙O于Q2,

此时垂线段OP2最短,P2Q2最小值为OQ2-OP2,

∵AB=20,AC=8,BC=6,

∴AB2=AC2+BC2,∴∠C=90°,

∵∠OP2A=90°,∴OP2∥BC.

∵O为AB的中点,∴P2C=P2A,OP2=BC=2.又∵BC是⊙O的切线,∴∠OEB=90°,∴OE∥AC,又O为AB的中点,∴OE=AC=4=OQ2.

∴P2Q2最小值为OQ2-OP2=4-2=2,

如图,当Q2在AB边上时,P2与A重合时,P2Q2经过圆心,经过圆心的弦最长,

P2Q2最大值=AO+OQ2=5+4=9,

∴PQ长的最大值与最小值的和是20.

故选:C.【点睛】本题考查切线的性质,三角形中位线定理,勾股定理的逆定理以及平行线的判定等知识,解题的关键是正确找到点PQ取得最大值、最小值时的位置,属于中考常考题型.3、A【分析】根据方差的意义即可得.【详解】方差越小,表示成绩波动性越小、越稳定观察表格可知,甲的方差最小,则派甲去参赛更合适故选:A.【点睛】本题考查了方差的意义,掌握理解方差的意义是解题关键.4、B【分析】先根据等腰三角形的性质得出BD=BC=5m,AD⊥BC,再由cosB=,∠B=36°知AB=,代入计算可得.【详解】∵△ABC是等腰三角形,且BD=CD,∴BD=BC=5m,AD⊥BC,在Rt△ABD中,∵cosB=,∠B=36°,∴AB==≈6.2(m),故选:B.【点睛】本题考查解直接三角形的应用,解题的关键是根据等腰三角形的性质构造出直角三角形Rt△ABD,再利用三角函数求解.5、D【分析】根据正多边形的一个内角是135°,则知该正多边形的一个外角为45°,再根据多边形的外角之和为360°,即可求出正多边形的边数.【详解】解:∵正多边形的一个内角是135°,∴该正多边形的一个外角为45°,∵多边形的外角之和为360°,∴边数=,∴这个正多边形的边数是1.故选:D.【点睛】本题考查了正多边形的内角和与外角和的知识,知道正多边形的外角之和为360°是解题关键.6、B【分析】根据折叠性质得到AF=AB=a,再根据相似多边形的性质得到,即,然后利用比例的性质计算即可.【详解】解:∵矩形纸片对折,折痕为EF,

∴AF=AB=a,

∵矩形AFED与矩形ABCD相似,

∴,即,

∴a∶b=.

所以答案选B.【点睛】本题考查了相似多边形的性质:相似多边形对应边的比叫做相似比.相似多边形的对应角相等,对应边的比相等.7、A【解析】根据二次根式有意义的条件:被开方数为非负数解答即可.【详解】∵是二次根式,∴x-3≥0,解得x≥3.故选A.【点睛】本题考查了二次根式有意义的条件.熟记二次根式的被开方数是非负数是解题关键.8、C【解析】根据一元二次方程的一般形式进行解答即可.【详解】5x2=6x﹣8化成一元二次方程一般形式是5x2﹣6x+8=0,它的二次项系数是5,一次项系数是﹣6,常数项是8,故选C.【点睛】本题考查了一元二次方程的一般形式,一元二次方程的一般形式是:ax2+bx+c=0(a,b,c是常数且a≠0)特别要注意a≠0的条件.这是在做题过程中容易忽视的知识点.在一般形式中ax2叫二次项,bx叫一次项,c是常数项.其中a,b,c分别叫二次项系数,一次项系数,常数项.9、A【分析】根据题意结合图形,分情况讨论:①时,根据,列出函数关系式,从而得到函数图象;②时,根据列出函数关系式,从而得到函数图象,再结合四个选项即可得解.【详解】①当时,∵正方形的边长为,∴;②当时,,所以,与之间的函数关系可以用两段二次函数图象表示,纵观各选项,只有A选项图象符合,故选A.【点睛】本题考查了动点问题的函数图象,根据题意,分别求出两个时间段的函数关系式是解题的关键.10、D【分析】根据白球两个,摸出三个球必然有一个黑球.【详解】解:A袋子中装有4个黑球和2个白球,摸出的三个球中可能为两个白球一个黑球,所以A不是必然事件;B.C.袋子中有4个黑球,有可能摸到的全部是黑球,B、C有可能不发生,所以B、C不是必然事件;D.白球只有两个,如果摸到三个球不可能都是白梂,因此至少有一个是黑球,D正确.故选D.【点睛】本题考查随机事件,解题关键在于根据题意对选项进行判断即可.二、填空题(每小题3分,共24分)11、(,).【分析】连接PQ、OP,如图,根据切线的性质得PQ⊥OQ,再利用勾股定理得到OQ=,利用垂线段最短,当OP最小时,OQ最小,然后求出OP的最小值,得到OQ的最小值,于是得到结论.【详解】连接PQ、OP,如图,∵直线OQ切⊙P于点Q,∴PQ⊥OQ,在Rt△OPQ中,OQ==,当OP最小时,OQ最小,当OP⊥直线y=2时,OP有最小值2,∴OQ的最小值为=.设点Q的横坐标为a,∴S△OPQ=×=×2×|a,∴a=,∴Q点的纵坐标==,∴Q点的坐标为(,),故答案为(,).【点睛】本题考查了切线的性质:圆的切线垂直于经过切点的半径.也考查了勾股定理.12、12π【分析】根据弧长公式代入可得结论.【详解】解:根据题意,扇形的弧长为,故答案为:12π.【点睛】本题主要考查弧长的计算,解决本题的关键是要熟练掌握弧长公式.13、-1【详解】解:∵的图象经过点C,∴C(0,1),将点C代入一次函数y=-x+m中,得m=1,∴y=-x+1,令y=0得x=1,∴A(1,0),∴S△AOC=×OA×OC=1,∵四边形DCAE的面积为4,∴S矩形OCDE=4-1=1,∴k=-1故答案为:-1.14、5【解析】试题解析:∵半径为10的半圆的弧长为:×2π×10=10π∴围成的圆锥的底面圆的周长为10π设圆锥的底面圆的半径为r,则2πr=10π解得r=515、55【解析】分析:∵∠ACB与∠AOB是所对的圆周角和圆心角,∠ACB=35º,∴∠AOB=2∠ACB=70°.∵OA=OB,∴∠OAB=∠OBA=.16、【分析】根据速度=路程÷时间,即可得出y与x的函数关系式.【详解】解:∵速度=路程÷时间,∴故答案为:【点睛】本题考查了根据行程问题得到反比例函数关系式,熟练掌握常见问题的数量关系是解答本题的关键.17、4【分析】根据比例中项的定义,列出比例式即可求解.【详解】∵线段c是a、b的比例中项,线段a=2cm,b=8cm,∴=,∴c2=ab=2×8=16,∴c1=4,c2=﹣4(舍去),∴线段c=4cm.故答案为:4【点睛】本题考查了比例中项的概念:当两个比例内项相同时,就叫比例中项.这里注意线段不能是负数.18、3【分析】如图,连接OD、OE、OF,由切线的性质和切线长定理可得OD⊥AB,OE⊥BC,OF⊥AC,AF=AD,BE=BD,接着证明四边形OECF为正方形,则CE=OE=CF=OF=1cm,所以BE=BD=2cm,由勾股定理可求AD的长.【详解】解:如图,连接OE,OF,OD,∵⊙O为△ABC内切圆,与三边分别相切于D、E、F,∴OD⊥AB,OE⊥BC,OF⊥AC,AF=AD,BE=BD,∴四边形OECF为矩形而OF=OE,∴四边形OECF为正方形,∴CE=OE=CF=OF=1cm,∴BE=BD=2cm,∵AC2+BC2=AB2,∴(AD+1)2+9=(AD+2)2,∴AD=3cm,故答案为:3【点睛】本题考查了三角形的内切圆与内心,切线的性质,切线长定理,勾股定理,正方形的判定和性质,熟悉切线长定理是本题的关键.三、解答题(共66分)19、(1)x1=2+,x2=2﹣;(2)x1=,x2=1.【分析】解一元二次方程常用的方法有因式分解法和公式法,方程在整式范围内不能因式分解,所以选择公式法即可求解;而方程移项后方程左边可以利用平方差公式进行因式分解,易求出此方程的解.【详解】解:(1)x2﹣4x+4=3,(x﹣2)2=3,x﹣2=±,所以x1=2+,x2=2﹣;(2)9(x﹣2)2﹣4(x+1)2=0,[3(x﹣2)+2(x+1)][3(x﹣2)﹣2(x+1)]=0,3(x﹣2)+2(x+1)=0或3(x﹣2)﹣2(x+1)=0,所以x1=,x2=1.【点睛】本题考查的是一元二次方程的解法,根据方程的特点和每一种解法的要点,选择合适的方法进行求解是关键.20、(1)见解析;(2)①见解析,②1【分析】(1)连接OC,由OA=OC得∠OAC=∠OCA,结合折叠的性质得∠OCA=∠FAC,于是可判断OC∥AF,然后根据切线的性质得直线FC与⊙O相切;(2)①连接OD、BD,利用直角三角形斜边上的中线的性质可证得CB=OC=OD=BD,再根据菱形的判定定理即可判定;②首先证明△OBC是等边三角形,在Rt△OCE中,根据,构建方程即可解决问题;【详解】(1)如图,连接OC,∵OA=OC,∴∠OAC=∠OCA,由翻折的性质,有∠OAC=∠FAC,∠AEC=∠AFC=90°,∴∠FAC=∠OCA,∴∥AF,∴∠OCG=∠AFC=90°,故FG是⊙O的切线;(2)①如图,连接OD、BD,∵CD垂直于直径AB,∴OC=OD,BC=BD,又∵B为OG的中点,∴,∴CB=OB,又∵OB=OC,∴CB=OC,则有CB=OC=OD=BD,故四边形OCBD是菱形;②由①知,△OBC是等边三角形,∵CD垂直于直径AB,∴,∴,设⊙O的半径长为R,在Rt△OCE中,有,即,解之得:,⊙O的半径长为:1.【点睛】本题属于圆综合题,考查了切线的判定,等边三角形的判定和性质,直角三角形斜边上的中线的性质,勾股定理等知识,解题的关键是学会添加常用辅助线,学会利用方程的思想解决问题.21、(1);(2).【分析】(1)根据M点的横坐标为1,求出k的值,得到反比例函数的解析式;(2)求出x=2,x=5时y的取值,再根据反比例函数的增减性求出y的取值范围.【详解】(1)正比例函数的图象与反比例函数的图象交于一点,且点的横坐标为.,,反比例函数的解析式为;(2)在反比例函数中,当,当,在反比例函数中,,当时,随的增大而减小,当时,反比例函数的取值范围为.【点睛】此题考查了三个方面:(1)函数图象上点的坐标特征;(2)用待定系数法求函数解析式;(3)反比例函数的增减性.22、【分析】根据相似三角形的判定定理可得△CAD∽△CBA,列出比例式即可求出AC.【详解】解:∵CD=4,BD=2,∴BC=CD+BD=6∵∠CAD=∠B,∠C=∠C∴△CAD∽△CBA∴∴解得:或(舍去)即.【点睛】此题考查的是相似三角形的判定及性质,掌握有两组对应角相等的两个三角形相似和相似三角形的对应边成比例是解决此题的关键.23、(1)方程的解为x1=c,x2=,验证见解析;(2)x=a与x=都为分式方程的解.【分析】(1)根据材料即可判断方程的解,然后代入到方程的左右两边检验即可;(2)将方程左右两边同时减去3,变为题干中的形式,即可得出答案.【详解】(1)方程的解为x1=c,x2=,验证:当x=c时,∵左边=c+,右边=c+,∴左边=右边,∴x=c是x+=c+的解,同理可得:x=是x+=c+的解;(2)方程整理得:(x﹣3)+=(a﹣3)+,解得:x﹣3=a﹣3或x﹣3=,即x=a或x=,经检验x=a与x=都为分式方程的解.【点睛】本题主要为材料理解题,理解材料中方程的根的由来是解题的关键.24、(1);(2)每件商品的销售价应定为元或元;(3)售价定为元/件时,每天最大利润元.【分析】(1)待定系数法求解可得;

(2)根据“每件利润×销售量=总利润”列出一元二次方程,解之可得;

(3)根据以上相等关系列出函数解析式,配方成顶点式,利用二次函数性质求解可得.【详解】(1)设与之间的函数关系式为,

由所给函数图象可知:

解得:.

故与的函数关系式为;(2)根据题意,得:,

整理,得:,

解得:或,

答:每件商品的销售价应定为元或元;(3)∵,

∴当时,,

∴售价定为元/件时,每天最大利润元.【点睛】本题主要考查二次函数的应用,解题的关键是掌握待定系数法求函数解析式,理解题意确定相等关系,并据此列出函数解析式.25、(1)y=﹣x2﹣2x+1;(2)点P(﹣2,1)在这个二次函数的图象上,【分析】(1)根据给定点的坐标,利用待定系数法求出二次函数解析式即可;

(2)代入x=-2求出y值,将其与1比较后即可得出结论.【详解】(1)设二次函数的解析式为y=ax2+bx+1;∵二次函数的图象经过点(﹣1,0),(2,﹣5),则有:解得;∴y=﹣x2﹣2x+1.(2)把x=

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论