2023届山东省烟台市、龙口市九年级数学第一学期期末达标检测模拟试题含解析_第1页
2023届山东省烟台市、龙口市九年级数学第一学期期末达标检测模拟试题含解析_第2页
2023届山东省烟台市、龙口市九年级数学第一学期期末达标检测模拟试题含解析_第3页
2023届山东省烟台市、龙口市九年级数学第一学期期末达标检测模拟试题含解析_第4页
2023届山东省烟台市、龙口市九年级数学第一学期期末达标检测模拟试题含解析_第5页
已阅读5页,还剩20页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年九上数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.如图,在中,,D为AC上一点,连接BD,且,则DC长为()A.2 B. C. D.52.二次函数的图象如右图所示,若,,则()A., B., C., D.,3.⊙O的半径为5,圆心O到直线l的距离为3,下列位置关系正确的是()A. B.C. D.4.若正方形的外接圆半径为2,则其内切圆半径为()A.2 B. C. D.15.如图所示,⊙的半径为13,弦的长度是24,,垂足为,则A.5 B.7 C.9 D.116.如图,已知直线与轴交于点,与轴交于点,将沿直线翻折后,设点的对应点为点,双曲线经过点,则的值为()A.8 B.6 C. D.7.若a是方程的一个解,则的值为A.3 B. C.9 D.8.如图,各正方形的边长均为1,则四个阴影三角形中,一定相似的一对是()A.①② B.①③ C.②③ D.③④9.一个正五边形和一个正六边形按如图方式摆放,它们都有一边在直线l上,且有一个公共顶点,则的度数是A. B. C. D.10.“泱泱华夏,浩浩千秋.于以求之?旸谷之东.山其何辉,韫卞和之美玉……”这是武汉16岁女孩陈天羽用文言文写70周年阅兵的观后感.小汀州同学把这篇气势磅礴、文采飞扬的文章放到自己的微博上,并决定用微博转发的方式传播.他设计了如下的传播规则:将文章发表在自己的微博上,再邀请n个好友转发,每个好友转发之后,又邀请n个互不相同的好友转发,依此类推.已知经过两轮转发后,共有111个人参与了宣传活动,则n的值为()A.9 B.10 C.11 D.1211.已知2是关于x的方程的一个根,则这个方程的另一个根是()A.3 B.-3 C.-5 D.612.对于题目“抛物线l1:(﹣1<x≤2)与直线l2:y=m(m为整数)只有一个交点,确定m的值”;甲的结果是m=1或m=2;乙的结果是m=4,则()A.只有甲的结果正确B.只有乙的结果正确C.甲、乙的结果合起来才正确D.甲、乙的结果合起来也不正确二、填空题(每题4分,共24分)13.把函数y=2x2的图象先向右平移3个单位长度,再向下平移2个单位长度得到新函数的图象,则新函数的表达式是_____.14.在平面直角坐标系中,抛物线y=﹣(x﹣1)2+2的顶点坐标是_____.15.二次函数y=图像的顶点坐标是__________.16.如图,矩形对角线交于点为线段上一点,以点为圆心,为半径画圆与相切于的中点交于点,若,则图中阴影部分面积为________________.17.定义:在平面直角坐标系中,我们将横、纵坐标都是整数的点称为“整点”.若抛物线y=ax2﹣2ax+a+3与x轴围成的区域内(不包括抛物线和x轴上的点)恰好有8个“整点”,则a的取值范围是_____.18.抛物线y=﹣x2向上平移1个单位长度得到抛物线的解析式为_____.三、解答题(共78分)19.(8分)为了了解全校1500名学生对学校设置的篮球、羽毛球、乒乓球、踢毽子、跳绳共5项体育活动的喜爱情况,在全校范围内随机抽查部分学生,对他们喜爱的体育项目(每人只选一项)进行了问卷调查,将统计数据绘制成如图两幅不完整统计图,请根据图中提供的信息解答下列各题.(1)m=%,这次共抽取了名学生进行调查;并补全条形图;(2)请你估计该校约有名学生喜爱打篮球;(3)现学校准备从喜欢跳绳活动的4人(三男一女)中随机选取2人进行体能测试,请利用列表或画树状图的方法,求抽到一男一女学生的概率是多少?20.(8分)定义:有且仅有一组对角相等的凸四边形叫做“准平行四边形”.例如:凸四边形中,若,则称四边形为准平行四边形.(1)如图①,是上的四个点,,延长到,使.求证:四边形是准平行四边形;(2)如图②,准平行四边形内接于,,若的半径为,求的长;(3)如图③,在中,,若四边形是准平行四边形,且,请直接写出长的最大值.21.(8分)(1)计算(2)解不等式组:22.(10分)在美化校园的活动中,某兴趣小组想借助如图所示的直角墙角(两边足够长),用32m长的篱笆围成一个矩形花园ABCD(篱笆只围AB,BC两边),设AB=xm.(Ⅰ)若花园的面积是252m2,求AB的长;(Ⅱ)当AB的长是多少时,花园面积最大?最大面积是多少?23.(10分)如图,是的直径,为上一点,于点,交于点,与交于点为延长线上一点,且.(1)求证:是的切线;(2)求证:;(3)若,求的长.24.(10分)如图,在菱形ABCD中,对角线AC,BD交于点O,AE⊥BC交CB延长线于E,CF∥AE交AD延长线于点F.(1)求证:四边形AECF是矩形;(2)连接OE,若AE=4,AD=5,求OE的长.25.(12分)已知:点和是一次函数与反比例函数图象的连个不同交点,点关于轴的对称点为,直线以及分别与轴交于点和.(1)求反比例函数的表达式;(2)若,求的取值范围.26.先化简,再求值.,请从一元二次方程x2+2x-3=0的两个根中选择一个你喜欢的求值.

参考答案一、选择题(每题4分,共48分)1、C【分析】利用等腰三角形的性质得出∠ABC=∠C=∠BDC,可判定△ABC∽△BCD,利用相似三角形对应边成比例即可求出DC的长.【详解】∵AB=AC=6∴∠ABC=∠C∵BD=BC=4∴∠C=∠BDC∴∠ABC=∠BCD,∠ACB=∠BDC∴△ABC∽△BCD∴∴故选C.【点睛】本题考查了等腰三角形的性质,相似三角形的判定与性质,解题的关键是找到两组对应角相等判定相似三角形.2、A【分析】由于当x=2.5时,,再根据对称轴得出b=-2a,即可得出5a+4c>0,因此可以判断M的符号;由于当x=1时,y=a+b+c>0,因此可以判断N的符号;【详解】解:∵当x=2.5时,y=,∴25a+10b+4c>0,,∴b=-2a,

∴25a-20a+4c>0,即5a+4c>0,

∴M>0,

∵当x=1时,y=a+b+c>0,

∴N>0,

故选:A.【点睛】此题主要考查了二次函数图象与系数的关系,解题的关键是注意数形结合思想的应用.3、B【分析】根据圆O的半径和圆心O到直线l的距离的大小,相交:d<r;相切:d=r;相离:d>r;即可选出答案.【详解】解:∵⊙O的半径为5,圆心O到直线l的距离为3,∵5>3,即:d<r,∴直线L与⊙O的位置关系是相交.故选:B.【点睛】本题主要考查了对直线与圆的位置关系的性质,掌握直线与圆的位置关系的性质是解此题的关键.4、B【解析】试题解析:如图所示,连接OA、OE,∵AB是小圆的切线,∴OE⊥AB,∵四边形ABCD是正方形,∴AE=OE,∴△AOE是等腰直角三角形,故选B.5、A【详解】试题分析:已知⊙O的半径为13,弦AB的长度是24,,垂足为N,由垂径定理可得AN=BN=12,再由勾股定理可得ON=5,故答案选A.考点:垂径定理;勾股定理.6、A【分析】作轴于,轴于,设.依据直线的解析式即可得到点和点的坐标,进而得出,,再根据勾股定理即可得到,进而得出,即可得到的值.【详解】解:作轴于,轴于,如图,设,当时,,则,当时,,解得,则,∵沿直线翻折后,点的对应点为点,∴,,在中,,①在中,,②①-②得,把代入①得,解得,∴,∴,∴.故选A.【点睛】此题考查反比例函数图象上点的坐标特征,解题关键在于掌握反比例函数(为常数,)的图象是双曲线,图象上的点的横纵坐标的积是定值,即.7、C【解析】由题意得:2a2-a-3=0,所以2a2-a=3,所以6a2-3a=3(2a2-a)=3×3=9,故选C.8、A【分析】利用勾股定理,求出四个图形中阴影三角形的边长,然后判断哪两个三角形的三边成比例即可.【详解】解:由图,根据勾股定理,可得出①图中阴影三角形的边长分别为:;②图中阴影三角形的边长分别为:;③图中阴影三角形的边长分别为:;④图中阴影三角形的边长分别为:;可以得出①②两个阴影三角形的边长,所以图①②两个阴影三角形相似;故答案为:A.【点睛】本题考查相似三角形的判定,即如果两个三角形三条边对应成比例,则这两个三角形相似;本题在做题过程中还需注意,阴影三角形的边长利用勾股定理计算,有的图形需要把小正方形补全后计算比较准确.9、B【分析】利用正多边形的性质求出∠AOE,∠BOF,∠EOF即可解决问题;【详解】由题意:∠AOE=108°,∠BOF=120°,∠OEF=72°,∠OFE=60°,∴∠EOF=180°−72°−60°=48°,∴∠AOB=360°−108°−48°−120°=84°,故选:B.【点睛】本题考查正多边形的性质、三角形内角和定理,解题关键在于掌握各性质定义.10、B【分析】根据传播规则结合经过两轮转发后共有111个人参与了宣传活动,即可得出关于n的一元二次方程,解之取其正值即可得出结论.【详解】解:依题意,得:1+n+n2=111,解得:n1=10,n2=﹣11(不合题意,舍去).故选:B.【点睛】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.11、A【解析】由根与系数的关系,即2加另一个根等于5,计算即可求解.【详解】由根与系数的关系,设另一个根为x,则2+x=5,即x=1.故选:A.【点睛】本题考查了根与系数的关系,用到的知识点:如果x1,x2是方程x2+px+q=0的两根,那么x1+x2=-p.12、C【分析】画出抛物线l1:y=﹣(x﹣1)2+4(﹣1<x≤2)的图象,根据图象即可判断.【详解】解:由抛物线l1:y=﹣(x﹣1)2+4(﹣1<x≤2)可知抛物线开口向下,对称轴为直线x=1,顶点为(1,4),如图所示:∵m为整数,由图象可知,当m=1或m=2或m=4时,抛物线l1:y=﹣(x﹣1)2+4(﹣1<x≤2)与直线l2:y=m(m为整数)只有一个交点,∴甲、乙的结果合在一起正确,故选:C.【点睛】本题考查了二次函数图象与一次函数图象的交点问题,作出函数的图象是解题的关键.二、填空题(每题4分,共24分)13、y=1(x﹣3)1﹣1.【分析】利用二次函数平移规律即可求出结论.【详解】解:由函数y=1x1的图象先向右平移3个单位长度,再向下平移1个单位长度得到新函数的图象,得新函数的表达式是y=1(x﹣3)1﹣1,故答案为y=1(x﹣3)1﹣1.【点睛】本题主要考查的是二次函数的图象与几何变换,熟知“上加下减,左加右减”的原则是解答此题的关键.14、(1,2).【分析】根据题目中抛物线的解析式,可以直接写出该抛物线的顶点坐标.【详解】解:∵抛物线y=﹣(x﹣1)2+2,∴该抛物线的顶点坐标为(1,2),故答案为:(1,2).【点睛】本题主要考查抛物线的顶点坐标,掌握抛物线的顶点坐标的形式是解题的关键.15、(-5,-3)【分析】根据顶点式,其顶点坐标是,对照即可解答.【详解】解:二次函数是顶点式,顶点坐标为.故答案为:.【点睛】此题主要考查了利用二次函数顶点式求顶点坐标,此题型是中考中考查重点,同学们应熟练掌握.16、【分析】连接BG,根据切线性质及G为中点可知BG垂直平分AO,再结合矩形性质可证明为等边三角形,从而得到∠ABD=60°,∠ADB=30°,再利用30°角直角三角形的三边关系求出AB,然后求出和扇形BEF的面积,两者相减即可得到阴影部分面积.【详解】连接BG,由题可知BG⊥OA,∵G为OA中点,∴BG垂直平分OA,∴AB=OB,∵四边形ABCD为矩形,∴OA=OB=OD=OC,∠BAD=90°,∴AB=OB=OA,即为等边三角形,∴∠ABO=∠BAO=60°,∴∠ADB=30°,∠ABG=30°,在中,∠ADB=30°,AD=,∴AB=OA=2,在中,∠ABG=30°,AB=2,∴AG=1,BG=,∴,又∵,∴.故答案为:.【点睛】本题考查了扇形面积的计算,矩形的性质,含30°角的直角三角形的三边关系以及等边三角形的判定与性质,较为综合,需熟练掌握各知识点.17、【分析】如图所示,,图象实心点为8个“整点”,则符合条件的抛物线过点A、B之间不含点,即可求解.【详解】解:,故抛物线的顶点为:;抛物线y=ax2﹣2ax+a+3与x轴围成的区域内(不包括抛物线和x轴上的点)恰好有8个“整点”,∴,如图所示,图象实心点为8个“整点”,则符合条件的抛物线过点和点上方,并经过点和点下方,当抛物线过点上方时,,解得:;当抛物线过点上方时,,解得:;当抛物线过点下方时,,解得:;当抛物线过点下方时,,解得:;∵四个条件同时成立,∴故答案为:.【点睛】本题考查根据二次函数的图象确定二次函数的字母系数的取值范围.找出包含“整点”的位置,利用数形结合的数学思想是解题的关键,难度较大.18、y=﹣+1【分析】直接根据平移规律作答即可.【详解】解:抛物线y=﹣x2向上平移1个单位长度得到抛物线的解析式为y=﹣x2+1,故答案为:y=﹣x2+1.【点睛】本题考查了函数图像的平移.要求熟练掌握平移的规律:左加右减,上加下减,并用规律求解析式.三、解答题(共78分)19、(1)20;50;(2)360;(3).【解析】试题分析:(1)首先由条形图与扇形图可求得m=100%-14%-8%-24%-34%=20%;由跳绳的人数有4人,占的百分比为8%,可得总人数4÷8%=50;(2)由1500×24%=360,即可求得该校约有360名学生喜爱打篮球;(3)首先根据题意画出表格,然后由表格即可求得所有等可能的结果与抽到一男一女学生的情况,再利用概率公式即可求得答案.试题解析:(1)m=100%-14%-8%-24%-34%=20%;∵跳绳的人数有4人,占的百分比为8%,∴4÷8%=50;如图所示;50×20%=10(人).(2)1500×24%=360;(3)列表如下:

男1

男2

男3

男1

男2,男1

男3,男1

女,男1

男2

男1,男2

男3,男2

女,男2

男3

男1,男3

男2,男3

女,男3

男1,女

男2,女

男3,女

∵所有可能出现的结果共12种情况,并且每种情况出现的可能性相等.其中一男一女的情况有6种.∴抽到一男一女的概率P=.考点:1.列表法与树状图法;2.扇形统计图;3.条形统计图.20、(1)见解析;(2);(3)【分析】(1)先根据同弧所对的圆周角相等证明三角形ABC为等边三角形,得到∠ACB=60°,再求出∠APB=60°,根据AQ=AP判定△APQ为等边三角形,∠AQP=∠QAP=60°,故∠ACB=∠AQP,可判断∠QAC>120°,∠QBC<120°,故∠QAC≠∠QBC,可证四边形是准平行四边形;(2)根据已知条件可判断∠ABC≠∠ADC,则可得∠BAD=∠BCD=90°,连接BD,则BD为直径为10,根据BC=CD得△BCD为等腰直角三角形,则∠BAC=∠BDC=45°,在直角三角形BCD中利用勾股定理或三角函数求出BC的长,过B点作BE⊥AC,分别在直角三角形ABE和△BEC中,利用三角函数和勾股定理求出AE、CE的长,即可求出AC的长.(3)根据已知条件可得:∠ADC=∠ABC=60°,延长BC到E点,使BE=BA,可得三角形ABE为等边三角形,∠E=60°,过A、E、C三点作圆o,则AE为直径,点D在点C另一侧的弧AE上(点A、点E除外),连接BO交弧AE于D点,则此时BD的长度最大,根据已知条件求出BO、OD的长度,即可求解.【详解】(1)∵∴∠ABC=∠BAC=60°∴△ABC为等边三角形,∠ACB=60°∵∠APQ=180°-∠APC-∠CPB=60°又AP=AQ∴△APQ为等边三角形∴∠AQP=∠QAP=60°∴∠ACB=∠AQP∵∠QAC=∠QAP+∠PAB+∠BAC=120°+∠PAB>120°故∠QBC=360°-∠AQP-∠ACB-∠QAC<120°∴∠QAC≠∠QBC∴四边形是准平行四边形(2)连接BD,过B点作BE⊥AC于E点∵准平行四边形内接于,∴∠ABC≠∠ADC,∠BAD=∠BCD∵∠BAD+∠BCD=180°∴∠BAD=∠BCD=90°∴BD为的直径∵的半径为5∴BD=10∵BC=CD,∠BCD=90°∴∠CBD=∠BDC=45°∴BC=BDsin∠BDC=10,∠BAC=∠BDC=45°∵BE⊥AC∴∠BEA=∠BEC=90°∴AE=ABsin∠BAC=6∵∠ABE=∠BAE=45°∴BE=AE=在直角三角形BEC中,EC=∴AC=AE+EC=(3)在中,∴∠ABC=60°∵四边形是准平行四边形,且∴∠ADC=∠ABC=60°延长BC到E点,使BE=BA,可得三角形ABE为等边三角形,∠E=60°,过A、E、C三点作圆o,因为∠ACE=90°,则AE为直径,点D在点C另一侧的弧AE上(点A、点E除外),此时,∠ADC=∠AEC=60°,连接BO交弧AE于D点,则此时BD的长度最大.在等边三角形ABE中,∠ACB=90°,BC=2∴AE=BE=2BC=4∴OE=OA=OD=2∴BO⊥AE∴BO=BEsin∠E=4∴BD=BO+0D=2+即BD长的最大值为2+【点睛】本题考查的是新概念及圆的相关知识,理解新概念的含义、掌握圆的性质是解答的关键,本题的难点在第(3)小问,考查的是与圆相关的最大值及最小值问题,把握其中的不变量作出圆是关键.21、(1)(2)【分析】(1)先算乘方、特殊三角函数值、绝对值,再算乘法,最后算加减法即可.(2)分别解各个一元一次不等式,即可解得不等式组的解集.【详解】(1).(2)解得解得故解集为.【点睛】本题考查了实数的混合运算和解不等式组的问题,掌握实数的混合运算法则、特殊三角函数值、绝对值的性质、解不等式组的方法是解题的关键.22、(Ⅰ)13m或19m;(Ⅱ)当AB=16时,S最大,最大值为:1.【分析】(Ⅰ)根据题意得出长×宽=252列出方程,进一步解方程得出答案即可;(Ⅱ)设花园的面积为S,根据矩形的面积公式得到S=x(28-x)=-+28x=–+196,于是得到结果.【详解】解:(Ⅰ)∵AB=xm,则BC=(32﹣x)m,∴x(32﹣x)=252,解得:x1=13,x2=19,答:x的值为13m或19m;(Ⅱ)设花园的面积为S,由题意得:S=x(32﹣x)=﹣x2+32x=﹣(x﹣16)2+1,∵a=﹣1<0,∴当x=16时,S最大,最大值为:1.【点睛】本题主要考查二次函数的应用以及二次函数最值求法,得出S与x的函数关系式是解题关键.23、(1)证明见解析;(2)证明见解析;(3)【分析】(1)欲证明BD是⊙O的切线,只要证明BD⊥AB;

(2)连接AC,证明△FCM∽△FAC即可解决问题;

(3)连接BF,想办法求出BF,FM即可解决问题.【详解】(1)∵,

∴∠AFC=∠ABC,

又∵∠AFC=∠ODB,

∴∠ABC=∠ODB,

∵OE⊥BC,

∴∠BED=90°,

∴∠ODB+∠EBD=90°,

∴∠ABC+∠EBD=90°,

∴OB⊥BD,

∴BD是⊙O的切线;

(2)连接AC,

∵OF⊥BC,

∴,,

∴∠BCF=∠FAC,

又∵∠CFM=∠AFC,

∴△FCM∽△FAC,

∴;

(3)连接BF,

∵AB是⊙O的直径,且AB=10,

∴∠AFB=90°,∴,

∴,

∴,

∵,

∴,

∵,

∴,

∴,∴.【点睛】本题属于圆综合题,考查了圆周角定理,切线的判定,相似三角形的判定和性质,勾股定理,解直角三角形等知识,解题的关键是学会添加常用辅助线.24、(1)见解析;(2)OE=25【解析】(1)根据菱形的性

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论